• 제목/요약/키워드: Error patterns

검색결과 693건 처리시간 0.033초

선형 판별분석과 공통벡터 추출방법을 이용한 음성인식 (Speech Recognition Using Linear Discriminant Analysis and Common Vector Extraction)

  • 남명우;노승용
    • 한국음향학회지
    • /
    • 제20권4호
    • /
    • pp.35-41
    • /
    • 2001
  • 본 논문에서는 선형 판별분석 (LDA: Linear Discriminant Analysis)과 공통벡터 추출방법을 이용한 음성인식방법을 제안하였다. 음성신호는 화자의 성별, 나이, 출생지, 주위 잡음, 정신적 상태, 발성기관의 구조 등과 같은 다양한 정보를 포함하고 있다. 이로 인해 같은 음성신호라 할지라도 서로 다른 화자가 발성하게 되면 서로 다른 특성을 보이게 된다. 음성신호의 이러한 성질은 같은 음성군 (class)에 포함된 공통된 특성벡터를 추출하는 일을 상당히 어렵게 한다. 음성신호에서 공통된 특징 벡터를 추출하는 방법은 KLT (Karhunen-Loeve Transformation)와 같이 선형 대수적인 접근방법이 많이 사용되어지고 있으나, 본 논문에서는 M. Bilginer et al.이 제안한 공통벡터 추출 방법을 사용하였다. M. Bilginer et al.이 제안한 방법은 주어진 훈련 음성신호들에 대하여 최적의 공통 벡터를 추출하여 주면서 공통벡터 추출에 사용된 훈련 데이터에 대해서는 100%의 인식결과를 보여준다. 그러나 공통벡터 추출을 위한 훈련 음성신호의 수를 무한히 늘릴 수 없다는 점과 공통벡터들간의 구별정보 (discriminant information)가 정의되지 않았다는 단점이 있다. 본 논문에서는 단어그룹간 (class) 구별정보를 추출된 공통벡터와 결합해 단어간의 오인식률 (error rate)을 감소시킬 수 있는 방법과 공통벡터 추출방법에 적합한 파라미터 가공 방법을 제안하였다. 공통벡터 추출방법은 음성신호의 시간 축 정규화 방법과 벡터의 차원 크기에 따라 인식시간과 인식률에 영향을 받는다. 따라서 부적절한 시간 축 정렬과 너무 큰 벡터의 차원 수는 인식률 저하 등과 같이 알고리즘의 효율성을 떨어뜨린다. 본 논문에서 제안한 방법을 사용하여 실험한 결과 알고리즘의 효율성이 증가되었으며, 기존방법보다 약 2%정도의 향상된 인식률을 얻을 수 있었다.낮추는 효과를 나타내었다.다. 이상의 결과를 통하여 추출 온도와 용매 농도에 따른 수율의 차이가 있었으며 free radical 소거 활성에서는 종자 에탄을 추출물이 과피 에탄올 추출물 보다 145배 이상의 현저히 높은 활성을 나타내었다.을 나타내었다.'Lian(연)' : repeatability, continuance, plenty and intercommunicate, 2. 'Lian(연)'-'Lian(염)': integrity, 3. 'He (하)'-'He(화)' : peace, harmony and combination, 4. 'He(하)'-'He(하)' : clear river, 5.'He(하)'-'He(하)' ; all work goes well. When the Chinese use lotus patterns in lucky omen patterns, same pronunciation and pitch of Chinese language more prominent than natural properties or the image of Buddhism. I guess that it cause praying individual's peace and happiness more serious than philosophical meaning or symbol that base in Buddhism for ordinary people.ML., -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n. fibrosis, collagen bundle) was

  • PDF

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석 (Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network)

  • 이재성;김석기;이명철;박광석;이동수
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.455-468
    • /
    • 1998
  • 이 연구에서는 간질 환자의 F-18-FDG 뇌 PET 영상을 공간정규화 기법으로 표준지도 위에 정규화한 후 표준지도의 해부학적 위치 정보를 이용하여 뇌기능영상의 영역을 자동적으로 분할하고 각 해부학적 위치의 F-18-FDG 섭취율을 추출하였다. 뇌 각 영역의 F-18-FDG 섭취율을 데이터베이스화한 것을 입력으로 하는 인공신경회로망을 구성하고 학습시켜 핵의학 전문의가 판독한 결과와 얼마나 일치되는지를 분석하였다. 핵의학 전문의 2명이 좌측측두엽간질(112명), 우측측두엽간질(81명) 혹은 정상(64명)으로 판독한 F-18-FDG 뇌 PET 영상을 대상으로, 학습의 치우침을 줄이기 위해 각 질환 군에서 동일한 수(40명)를 선택하여 학습군을 구성하고 학습군을 제외한 정상 24명, 좌측측두엽간질 72명, 우측 측두엽간질 41명의 F-18-FDG PET을 시험군으로 하였다. 모든 영상을 SPM76을 이용하여 MNI 표준지도 위에 공간정규화하고 전체 뇌영역의 평균 계수를 100으로 정규화하였다. 영역 분할 프로그램을 개발하여 표준지도를 34개 영역으로 분할하고 모든 영상에서 각 뇌영역엔 대한 평균 계수를 추출하였다. 비선형 패턴분류에 효과적인 다층퍼셉트론 신경회로망 모델을 써서 오류역전파 알고리즘으로 학습시켰다. 한 층의 은닉층을 부여하고 은닉층의 뉴런 수를 5개부터 차츰 늘려가며 최적의 개수를 선택하였다. 초기 가중치와 바이어스 값은 무작위 값을 갖게 하였다. 출력단은 세 개의 뉴런을 갖고 각 뉴런은 입력이 정상이면 [1 0 0], 좌측측두엽간질이면 [0 1 0], 우측측두엽간질이면 [0 1 0]의 값을 탐 값으로 하였다. 뉴런의 활성화 함수는 시그모이드 함수를 사용하였다. 입력단은 17개의 뉴런으로 구성하고 서로 마주보는 뇌영역의 계수 타이(오른쪽-왼쪽)를 입력으로 하였다 회로망의 학습 횟수를 10,000번으로 제한하여 오타의 허용치를 1로 설정하고 학습 횟수가 넘거나 오차가 허용치보다 작을 때 학습을 중단하게 하였다. 모멘텀과 적응형 학습율을 사용하여 신경회로망의 성능을 향상시키고 학습 속도를 빠르게 하였다. 모든 PET 영상에서 성공적으로 공간정규화 파라메터를 추출하여 표준지도에 정규화할 수 있었다 다층퍼셉트론 모델을 기반으로 한 인공신경회로망으로 27개의 은닉층 뉴런을 사용했을 때 최적의 결과를 얻을 수 있었다. 학습군에 대해서 1508번의 반복 학습을 시킨 결과 오차율 0%인 신경 회로망을 얻었으며 시험군에 대해 적용한 결과 전문가의 판독결과와 80.3%의 일치율을 보였다. 은닉층의 뉴런 수가 10개나 30개인 경우에도 학습군에 대해 오타율 0%인 신경회로망을 얻을 수 있었으며 이때의 시험군에 대한 일치율 역시 75∼80%의 값을 보였다.

  • PDF

생활용수 실적자료와 기후 변수를 활용한 충청권역 생활용수 이용량 패턴 분석 (Analysis of domestic water usage patterns in Chungcheong using historical data of domestic water usage and climate variables)

  • 김민지;박성민;이경주;소병진;김태웅
    • 한국수자원학회논문집
    • /
    • 제57권1호
    • /
    • pp.1-8
    • /
    • 2024
  • 우리나라는 기후변화의 영향으로 지속되는 가뭄으로 인해 물 부족 문제가 심화되고 있다. 제1차 국가물관리기본계획에 따르면, 생활 및 공업용수 부족량은 과거 최대 가뭄빈도(50년) 기준으로 0.07억 m3/년으로 전망되고 있다. 이러한 물 부족 문제에 효과적으로 대응하기 위해서는 장기적인 용수 수요 전망이 필수적이다. 공업용수의 경우 월별 사용량이 비교적 일정하지만, 생활용수의 경우 월별 패턴이 뚜렷하기 때문에 연단위 분석이 아닌 월단위 분석을 수행해야 한다. 본 연구는 충청권역을 대상으로 2017~2021년의 월별 용수 이용량 자료에 대해 패턴을 분석하고, 기후 변수와의 상관성을 이용하여 용수 분배 비율을 계산하였다. 그 결과 월별 생활용수 이용량을 연 이용량으로 나눈 월별 용수 이용률을 다시 평균기온으로 나누는 분법으로 계산한 경우가 절대오차가 가장 작게 산정되었으며, 이를 활용하여 충청권역의 월별 분배 비율을 산정하였다. 또한 충청권역의 월별 분배 비율에 SSP5-8.5 시나리오의 평균기온을 곱해 충청권역의 미래 월별 용수 이용률을 전망하였다. 그 결과, 최댓값의 평균은 1.16에서 1.29로 증가하고 최솟값의 평균은 0.86에서 0.84로 감소하였으며, 1사분위수는 0.95에서 0.93으로 감소하고 3사분위수는 1.04에서 1.06으로 증가하였다. 따라서 미래에는 현재와 비슷한 패턴을 유지할 것으로 보이지만, 월별 용수 이용률의 변동성은 커질 것으로 예상된다.

MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발 (Development of a Biophysical Rice Yield Model Using All-weather Climate Data)

  • 이지혜;서범석;강신규
    • 대한원격탐사학회지
    • /
    • 제33권5_2호
    • /
    • pp.721-732
    • /
    • 2017
  • 벼 등 식량작물 작황 추정의 경제, 산업적 중요성이 증가함에 따라 생물리 모형과 원격탐사 기반의 위성자료를 활용한 작황 추정 연구가 활발히 진행되고 있다. 이 연구에서는 위성 기반의 전천후 기상 입력자료(i.e. 기온, 대기 수증기압 포차, 일사량)와 빛 이용효율 모형을 이용한 생물리적 작물 성장 알고리즘을 벼에 적용하여 벼의 수확량을 수확 시기 보다 이르게(9월 중순 경) 추정하는 것을 목적으로 하였다. 2003년부터 2014년까지 12년간 경상권을 제외한 국내의 군 단위 행정구역별 벼 수확량을 추정하고, 이를 통계청에서 제공하는 현미 생산량 통계와 비교, 평가하였다. 벼 건중량, 수확지수 그리고 수확량 추정 결과는 각각 지도로 작성하여 공간적 분포 양상을 분석하였다. 연도별 전국 평균 추정 건중량은 평균오차(ME)가 0.56%, 평균절대오차(MAE)가 5.73%로 유의미한 결과를 보였다. 연도별 군 단위 건중량은 ME가 0.10%에서 2.00%, MAE가 2.10에서 11.62%의 범위를 보였다. 추정된 건중량은 강원지역에서 상대적으로 과대 모의하고, 충청 이남의 도심과 서해 인근지역에서 과소 모의하는 경향을 보였다. 건중량과 유관한 통계청 자료(i.e. 볏짚 생산량)와는 상반된 변동 양상을 보였는데, 이는 입력자료의 해상도(1 km)로 인한 픽셀 내 토지피복 이질성으로 인한 오차로 사료된다. 또한 생육기간 이후 수확시기의 생육상황을 고려하지 못하는 점을 향후 연구에서 개선할 필요가 있다.

위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로 (Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011)

  • 윤선권;박경원;김종필;정일원
    • 한국수자원학회논문집
    • /
    • 제47권4호
    • /
    • pp.371-384
    • /
    • 2014
  • 본 논문에서는 천리안(Communication, Ocean and Meteorological Satellite; COMS)과 TRMM(Tropical Rainfall Measurement Mission)을 통하여 관측한 위성영상자료를 이용한 극치강우(Extreme Rainfall) 추정 알고리즘을 개발하였으며, 2011년 7월 집중호우를 대상으로 그 적용성을 평가하였다. TRMM/PR(TRMM/Precipitation Radar)과 AWS(Automatic Weather System) 자료를 이용하여 고도에 따른 멱급수 회귀방정식으로 Z-R관계식을 추정한 결과 $Z=303R^{0.72}$를 산출하였으며, 지상관측 자료와 비교한 결과 상관계수가 0.57로 분석되었다. 이 값과 TRMM/VIRS(TRMM/Visible Infrared Scanner)와의 관계를 이용하여 극치강우알고리즘을 개발하였으며, 천리안 위성에 적용하여 10분강 우를 추정한 결과 강우강도가 큰 경우에는 과소 추정하는 경향이, 작은 경우에는 과대 추정하는 경향이 있는 것으로 분석되었으나, 전반적인 패턴은 관측과 유사한 경향이 있는 것으로 분석되었다. 또한 이 알고리즘을 같은 센서를 이용하는 천리안 위성에 적용하여 AWS의 상관관계를 분석한 결과, 10분 강우량의 경우 상관계수는 0.517로 평균제곱근 오차는 3.146으로 분석되었고, 공간 상관행렬 오차의 평균은 -0.530~-0.228의 음의 상관을 보이는 것으로 분석되었다. 위성자료를 이용한 극치강우량 추정의 오차 발생 원인은 여러 가지 외부적인 요인으로 판단되며, 지속적인 알고리즘 개선 및 오차보정을 통한 정확도 개선이 필요한 것으로 사료된다. 본 연구의 결과는 추후 다양한 정지궤도위성의 이용을통 한 다중 원격탐사자료의 활용으로 보다 정확한 미계측 유역 수문자료 확충 및 실시간 홍수 예 경보 시스템 구축에 활용이 가능할 것으로 사료된다.

기업실적에 대한 재무분석가의 예측활동에 관한 실증연구 (An Empirical Study of Financial Analyst's Forecasting Activities on the Firm's Operating Performances)

  • 곽재석
    • 재무관리연구
    • /
    • 제20권1호
    • /
    • pp.93-124
    • /
    • 2003
  • 본 연구에서는 2000년부터 2002년까지의 기간에서 국내 외의 재무분석가들이 1999년$\sim$2003년까지의 각 연도별 연간 매출액, 영업이익과 순이익에 대하여 발표한 예측치를 대상으로 하여 재무분석가들이 기업실적을 얼마나 정확하게 예측하며, 예측치를 수정할 때 어떤 체계적인 경향을 보이며, 기업실적을 예측할 때 전년도의 실적변화에 대해 어떤 반응을 보이는지를 분석하는데 목적을 두었다. 이러한 분석목적을 달성하기 위하여 재무분석가별, 예측년도별, 전년도의 기업실적 변화별로 표본을 각각 분류하여 재무분석가별 예측의 정확성, 합의예측치의 상대적 정확성, 예측치의 수정패턴 및 예상 밖의 전년도 실적변화에 대한 반응을 분석하였다. 본 연구에서 발견된 분석결과를 요약하면 다음과 같다. 첫째, 매출액, 영업이익과 순이익의 표준예측오차가 모두 통계적으로 유의적인 음(-)의 값을 보임으로써 재무분석가들이 기업실적을 상향 편의적으로 예측하는 경향이 있음을 발견하였다. 둘째, 국내. 외 재무분석가의 예측정확성을 비교한 분석에서 국내 재무분석가들이 국외 재무분석가들에 비해 상대적으로 정확한 예측을 하고 있음을 발견하였다. 셋째, 예측시점별로 측정한 평균표준예측오차에 대한 분석에서는 예측시점이 기업실적의 발표시점에 가까워질수록 예측의 정확성이 높아짐을 발견하였다. 넷째, 개별재무분석가와 비교할 때, 합의예측치의 정확성이 상대적으로 떨어지는 것으로 나타났으며, 합의 예측치를 추정할 때 평균보다 중위값을 이용하여 추정한 경우 예측오차를 줄일 수 있는 것으로 나타났다. 다섯째, 재무분석가들이 기업실적을 과대 예측한 다음 예측치를 하향 수정하는 것으로 나타났으나 체계적이지 않음을 발견할 수 있었다. 즉 재무분석가들은 전년도의 기업실적에 따라 예측치를 상향 또는 하향 수정하는 것으로 나타났다. 여섯째, 재무분석가들은 예측활동을 수행하는 과정에서 전년도의 매출액 변화에 대하여 과대 반응하는 한편 전년도의 영업이익과 순이익 변화에 대하여 과소 반응함을 발견할 수 있었다. 일곱째, 재무분석가들의 예측편의를 보다 정확하게 분석하기 위하여 정보변수인 전년기업실적 변수를 예상된 실적변화와 예상치 못한 실적변화로 분류하여 Easterwood-Nutt(1999)모형을 이용해 분석한 결과 세 개의 기업실적변수(매출액, 영업이익과 순이익)모두의 예상치 못한 전년실적변화에 대해 재무분석가들이 과대 예측하는 것이 아니라 낙관적 예측을 수행하는 경향이 있음을 발견할 수 있었다.

  • PDF

공간계량분석 방법에 따른 시설물 화재 발생 유의성 분석 (Significance Analysis of Facility Fires Though Spatial Econometrics Assessment)

  • 서민송;유환희
    • 한국측량학회지
    • /
    • 제38권3호
    • /
    • pp.281-293
    • /
    • 2020
  • 최근 우리나라는 크고 작은 화재가 지속해서 발생하고 있다. 화재는 우리나라의 도시 내에서 교통사고와 더불어 가장 많이 발생하는 재해 중 하나이며, 화재 발생 빈도는 토지이용의 형태와 시설물의 유형에 따라 밀접한 상관성을 갖고 있다. 따라서 본 연구에서는 진주시를 대상으로 10년간 화재데이터를 사용하여 토지용도별, 시설물 유형별 그리고 인문 사회적 요인을 고려하여 화재 발생의 유의성을 분석하였다. 먼저 진주시 화재 발생의 공간분포 패턴을 파악한 후, 다중 회귀분석을 통해 인문·사회 및 물리적 요인 간의 공간적 종속성 및 비정상성을 확인하였다. 이를 토대로 화재 발생 위치와 각 요인의 위치를 고려하여 공간가중치를 활용한 선형회귀모형, 공간시차모형 그리고 공간오차모형을 비교 분석하였으며 적합도가 높은 통계모형을 제시하였다. 그 결과 진주시 화재 발생의 공간분포 패턴을 확인하기 위해 LISA분석을 실시하였으며 중심상업지역, 공업지역, 주거지역 순으로 화재 발생 빈도가 높은 것으로 나타났고, 인구·사회 및 물리적 변수를 통합하여 다중회귀분석을 실시하였다. 이에 따라 최종 도출된 요인들을 중심으로 공간가중치를 적용하여 세 모형을 비교 분석하였으며 유의성 검정을 실시한 결과 공간오차모형이 가장 유의한 것으로 분석되었다. 화재 발생과 가장 높은 상관성이 있는 시설은 제2종 근린생활시설로 나타났으며 다음으로 단독주택, 제1종 근린생활시설, 가구 수, 판매시설의 순으로 분석되었다. 또한, 표준편차 타원체분석을 통하여 용도지역 중 주거지역, 공업지역, 중심상업지역을 중심으로 시설물별 분포특성을 분석한 결과 주거지역 및 공업지역에서는 네 개 시설물의 특성이 비슷하게 나타났으나 중심상업지역에서는 화재위험도가 가장 높은 제2종 근린생활시설이 중심부에 집중분포하였다. 이러한 연구 결과는 도시지역에서 발생하는 화재에 대해 시설물별 특성을 파악하여 화재안전관리를 하는데 유용한 자료로 활용될 것으로 예상된다.

p-수렴 경계요소법에 의한 L-형 영역을 갖는 2차원 포텐셜 문제 해석 (Analysis of 2-D Potential Problem with L-shape Domain by p-Convergent Boundary Element Method)

  • 우광성;조준형
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.117-124
    • /
    • 2009
  • 2차원 포텐셜 문제를 해석하기 위해 고차의 르장드르 형상함수에 기초를 둔 p-수렴 경계요소법이 제안되었다. p-수렴 경계요소법은 종래의 경계요소법에서 사용되는 형상함수와 성질이 다른 르장드르 다항식을 형상함수로 사용한다. p-수렴 유한요소법과 마찬가지로 고차의 형상함수에 따른 절점의 위치가 경계상에서 정해지지 않는다. 따라서 형상함수가 증가함에 따라 선형방정식을 구성하기 위한 수단으로 선점법을 이용하였다. p-수렴 경계요소법에서 선점법은 비대칭 계층적 선점법과 대칭 비계층적 선점법을 선택하여 수치해석을 수행하였다. 선택점들은 형상함수가 증가함에 따라 증가하는 성질을 나타내며 계층적 또는 대칭적으로 선택될 수 있다. p-수렴 경계요소법에서 나타나는 특이 적분항을 계산하기 위해 special numeric quadrature technique와 semi-analytical integration technique를 사용하였다. 사각모서리부에서 특이성을 가지는 L-형 영역문제를 해석한 결과 적은 수의 자유도에서 기존문헌의 결과와 차이가 거의 없는 정도인 $10^{-2}%$단위 이하의 정확도를 보여주었다. 또한 같은 조건에서는 대칭형 선점의 위치를 이용해 계산한 값이 가장 높은 정확도를 보여주었다.

일반화 신경망의 개선된 학습 과정을 위한 최적화 신경망 학습률들의 효율성 비교 (A Comparison of the Effects of Optimization Learning Rates using a Modified Learning Process for Generalized Neural Network)

  • 윤여창;이성덕
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.847-856
    • /
    • 2013
  • 본 연구에서는 Liu 등의 학습 알고리즘과 Wu와 Zhang의 초기 가중값의 범위 설정, 그리고 Gunaseeli와 Karthikeyan의 초기 가중값에 관한 연구 결과를 이용하여 일반화 네트워크를 구할 수 있는 개선된 학습을 제안하고, 최적화된 신경망 학습률들을 이용하여 개선된 학습 과정의 학습효율등을 비교해 본다. 제시된 알고리즘을 이용한 학습에서 학습 초기에는 가장 단순한 학습 패턴과 은닉층으로부터 학습을 시작한다. 신경망 학습과정 중에 지역 최소값에 수렴되는 경우에는 가중값 범위 조정을 통하여 지역 최소값 문제를 해결하고, 지역 최소값으로부터 탈출이 용이하지 않으면 은닉노드를 점차적으로 하나씩 추가하면서 학습한다. 각 단계에서 새롭게 추가된 노드에 대한 초기 가중값의 선택은 이차계획법을 이용한 최적 처리절차를 이용한다. 최적 처리절차는 은닉층의 노드가 추가된 후의 새로운 네트워크에서 학습회수를 단순히 증가시키지 않아도 주어진 학습 허용오차를 만족시킬 수 있다. 본 연구에서 적용한 개선된 알고리즘을 이용하면서 초기 가중값들에 관한 기존 연구들을 적용하면 신경망 학습시의 수렴 정도를 높여주고 최소한의 단순 구조를 갖는 일반화 네트워크로 추정할 수 있게 된다. 이러한 학습률들을 변화시키는 모의실험을 통하여 기존의 연구 결과와의 학습 효율을 비교하고 향후 연구 방향을 제시하고자 한다.