• Title/Summary/Keyword: Error of position

Search Result 2,682, Processing Time 0.04 seconds

A Study on Smart Accuracy Control System based on Augmented Reality and Portable Measurement Device for Shipbuilding (조선소 블록 정도관리를 위한 경량화 측정 장비 및 증강현실 기반의 스마트 정도관리 시스템 개발)

  • Nam, Byeong-Wook;Lee, Kyung-Ho;Lee, Won-Hyuk;Lee, Jae-Duck;Hwang, Ho-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • In order to increase the production efficiency of the ship and shorten the production cycle, it is important to evaluate the accuracy of the ship components efficiently during the drying cycle. The accuracy control of the block is important for shortening the ship process, reducing the cost, and improving the accuracy of the ship. Some systems have been developed and used mainly in large shipyards, but in some cases, they are measured and managed using conventional measuring instruments such as tape measure and beam, optical instruments as optical equipment, In order to perform accuracy control, these tools and equipment as well as equipment for recording measurement data and paper drawings for measuring the measurement position are inevitably combined. The measured results are managed by the accuracy control system through manual input or recording device. In this case, the measurement result is influenced by the work environment and the skill level of the worker. Also, in the measurement result management side, there are a human error about the lack of the measurement result creation, the lack of the management sheet management, And costs are lost in terms of efficiency due to consumption. The purpose of this study is to improve the working environment in the existing accuracy management process by using the augmented reality technology to visualize the measurement information on the actual block and to obtain the measurement information And a smart management system based on augmented reality that can effectively manage the accuracy management data through interworking with measurement equipment. We confirmed the applicability of the proposed system to the accuracy control through the prototype implementation.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Design of a Crowd-Sourced Fingerprint Mapping and Localization System (군중-제공 신호지도 작성 및 위치 추적 시스템의 설계)

  • Choi, Eun-Mi;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.9
    • /
    • pp.595-602
    • /
    • 2013
  • WiFi fingerprinting is well known as an effective localization technique used for indoor environments. However, this technique requires a large amount of pre-built fingerprint maps over the entire space. Moreover, due to environmental changes, these maps have to be newly built or updated periodically by experts. As a way to avoid this problem, crowd-sourced fingerprint mapping attracts many interests from researchers. This approach supports many volunteer users to share their WiFi fingerprints collected at a specific environment. Therefore, crowd-sourced fingerprinting can automatically update fingerprint maps up-to-date. In most previous systems, however, individual users were asked to enter their positions manually to build their local fingerprint maps. Moreover, the systems do not have any principled mechanism to keep fingerprint maps clean by detecting and filtering out erroneous fingerprints collected from multiple users. In this paper, we present the design of a crowd-sourced fingerprint mapping and localization(CMAL) system. The proposed system can not only automatically build and/or update WiFi fingerprint maps from fingerprint collections provided by multiple smartphone users, but also simultaneously track their positions using the up-to-date maps. The CMAL system consists of multiple clients to work on individual smartphones to collect fingerprints and a central server to maintain a database of fingerprint maps. Each client contains a particle filter-based WiFi SLAM engine, tracking the smartphone user's position and building each local fingerprint map. The server of our system adopts a Gaussian interpolation-based error filtering algorithm to maintain the integrity of fingerprint maps. Through various experiments, we show the high performance of our system.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2013
  • This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

Evaluation of Usefulness of Iterative Metal Artifact Reduction(IMAR) Algorithm In Proton Therapy Planning (양성자 치료계획에서 Iterative Metal Artifact Reduction(IMAR) Algorithm 적용의 유용성 평가)

  • Han, Young Gil;Jang, Yo Jong;Kang, Dong Heok;Kim, Sun Young;Lee, Du Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Purpose: To evaluate the accuracy of the Iterative Metal Artifact Reduction (IMAR) algorithm in correcting CT (computed tomography) images distorted due to a metal artifact and to evaluate the usefulness when proton therapy plan was plan using the images on which IMAR algorithm was applied. Materials and Methods: We used a CT simulator to capture the images when metal was not inserted in the CIRS model 062 Phantom and when metal was inserted in it and Artifact occurred. We compared the differences in the CT numbers from the images without metal, with a metal artifact, and with IMAR algorithm by setting ROI 1 and ROI 2 at the same position in the phantom. In addition, CT numbers of the tissue equivalents located near the metal were compared. For the evaluation of Rando Phantom, CT was taken by inserting a titanium rod into the spinal region of the Rando phantom modelling a patient who underwent spinal implant surgery. In addition, the same proton therapy plan was established for each image, and the differences in Range at three sites were compared. Results: In the evaluation of CIRS Phantom, the CT numbers were -6.5 HU at ROI 1 and -10.5 HU at ROI 2 in the absence of metal. In the presence of metal, Fe, Ti, and W were -148.1, -45.1 and -151.7 HU at ROI 1, respectively, and when the IMAR algorithm was applied, it increased to -0.9, -2.0, -1.9 HU. In the presence of metal, they were 171.8, 63.9 and 177.0 HU at ROI 2 and after the application of IMAR algorithm they decreased to 10.0 6,7 and 8.1 HU. The CT numbers of the tissue equivalents were corrected close to the original CT numbers except those in the lung located farthest. In the evaluation of the Rando Phantom, the mean CT numbers were 9.9, -202.8, and 35.1 HU at ROI 1, and 9.0, 107.1, and 29 HU at ROI 2 in the absence, presence of metal, and in the application of IMAR algorithm. The difference between the absence of metal and the range of proton beam in the therapy was reduced on the average by 0.26 cm at point 1, 0.20 cm at point 2, and 0.12 cm at point 3 when the IMAR algorithm was applied. Conclusion: By applying the IMAR algorithm, the CT numbers were corrected close to the original ones obtained in the absence of metal. In the beam profile of the proton therapy, the difference in Range after applying the IMAR algorithm was reduced by 0.01 to 3.6 mm. There were slight differences as compared to the images absence of metal but it was thought that the application of the IMAR algorithm could result in less error compared with the conventional therapy.

  • PDF

The Change of Total Scan Time in Accordance with the Time of the Decision of Scan Time (스캔 시간의 결정시기에 따른 총 스캔 시간 변화에 관한 연구)

  • Lee, Jong-Hun;Ryu, Jae-Kwang;Chung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2009
  • Purpose: The examination of nuclear medicine observes the change in accordance with the time elapsed in the same region purposed and there are many examinations to acquire the image during the same term. At this time, the same parameter should be applied. The hepatobiliary scan, lung scan etc, are the acquired examination in the divided time with a regular term. Pre-set time that is applied in continued next image is set in order to acquire the fixed counts. The same scan time should be applied for each image. This study will look for the rational plan and analyze the change of scan time in accordance with the time of the decision of scan time at examination that pre-set time is applied. Methods: The hapatobiliary scan that use the radio pharmaceutical $^{99m}Tc$-mebrofenin is choosed as compensation from Jan. 2009 to Mar. 2009 in the department of nuclear medicine in ASAN MEDICAL CENTER. Scan is started after 5 minutes from when 222 MBq (6 mCi) is injected to patient. We let patient stand up between both detectors, and possibly close to the front of detector. When scan time reach 10%, 25%, 50%, 75% of total scan time, we measured the expected total scan time. After finishing all of scan, we compared the total scan time and the expected total scan time, while image is acquiring. and we observed the change of scan time in accordance with radio activity by using phantom. Results: After starting scan, a difference of when scan time reach 10%, 25%, 50%, 75% of total scan time is that the biggest difference is 5 seconds on 10%. There statistically is difference between 25% (t:2.88, p<0.01) and 50% (t:2.05, p<0.01). Conclusions: When the same the scan time is applied in the examination that acquire the many frame, concluding the same scan time has a important effect on a quantitative analysis. Although method that decide the scan time after finish all of the examinations, there is a few problem to apply practical affairs. This may cause an inaccurate result on the examination that need a quantitative analysis. We think that operator should try to improve it. At least, after reach 50% of total scan time, deciding the total scan time mean that you can minimize error of a quantitative analysis caused by unmatched scan time from a gap of image.

  • PDF

Analysis of Geolocation Accuracy of Precision Image Processing System developed for CAS-500 (국토관측위성용 정밀영상생성시스템의 위치정확도 분석)

  • Lee, Yoojin;Park, Hyeongjun;Kim, Hye-Sung;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.893-906
    • /
    • 2020
  • This paper reports on the analysis of the location accuracy of a precision image generation system manufactured for CAS 500. The planned launch date of the CAS 500 is 2021, and since it has not yet been launched, the analysis was performed using KOMPSAT-3A satellite images having similar specifications to the CAS 500. In this paper, we have checked the geolocation accuracy of initial sensor model, the model point geolocation accuracy of the precise sensor model, the geolocation accuracy of the precise sensor model using the check point, and the geolocation accuracy of the precise orthoimage using 30 images of the Korean Peninsula. In this study, the target geolocation accuracy is to have an RMSE within 2 pixels when an accurate ground control point is secured. As a result, it was confirmed that the geolocation accuracy of the precision sensor model using the checkpoint was about 1.85 pixels in South Korea and about 2.04 pixels in North Korea, and the geolocation accuracy of the precise orthoimage was about 1.15 m in South Korea and about 3.23 m in North Korea. Overall, it was confirmed that the accuracy of North Korea was low compared to that of South Korea, and this was confirmed to have affected the measured accuracy because the GCP (Ground Control Point) quality of the North Korea images was poor compared to that of South Korea. In addition, it was confirmed that the accuracy of the precision orthoimage was slightly lower than that of precision sensor medel, especially in North Korea. It was judged that this occurred from the error of the DTM (Digital Terrain Model) used for orthogonal correction. In addition to the causes suggested by this paper, additional studies should be conducted on factors that may affect the position accuracy.

Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment (자체 제작한 Foxtail Millet Vacuum Cushion의 광자선 피부암 치료 시 유용성 검증)

  • Choi, Shin-Cheol;Lee, Kyung-Jae;Jung, Sung-Min;Oh, Tae-Seong;Park, Jong-Il;Shin, Hyun-Kyo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • Purpose: The sufficiency of skin dose and the reemergence of patient set-up position to the success of skin cancer radiation treatment is a very important element. But the conventional methods to increase the skin dose were used to vacuum cushion, bolus and water tank have several weak points. For this reason, we producted Foxtail Millet Vacuum Cushion and evaluated the efficiency of the Foxtail Millet Vacuum Cushion in skin cancer Radiation treatment. Materials and Methods: We measured absolute dose for 3 materials (Foxtail Millet Vacuum Cushion, bolus and solid water phantom) and compared each dose distribution. We irradiated 6 MV 100 MU photon radiation to every material of 1 cm, 2 cm, 3 cm thickness at three times. We measured absolute dose and compared dose distribution. Finally we inspected the CT simulation and radiation therapy planing using the Foxtail Millet Vacuum Cushion. Results: Absolute dose of Foxtail Millet Vacuum Cushion was similar to absolute dose of bolus and solid water phantom's result in each thickness. it Showed only the difference of 0.1~0.2% between each material. Also the same result in dose distribution comparison. About 97% of the dose distribution was within the margin of error in the prescribed ranges ($100{\pm}3%$), and achieved the enough skin dose (Gross Tumor Volume dose : $100{\pm}5%$) in radiation therapy planing. Conclusion: We evaluated important fact that Foxtail Millet Vacuum Cushion is no shortage of time to replace the soft tissue equivalent material and normal vacuum cushion at the low energy radiation transmittance. Foxtail Millet Vacuum Cushion can simultaneously achieve the enough skin dose in radiation therapy planing with maintaining normal vacuum cushion' function. Therefore as above We think that Foxtail Millet Vacuum Cushion is very useful in skin cancer radiation treatment.

  • PDF