• Title/Summary/Keyword: Error of Measurement

Search Result 3,868, Processing Time 0.034 seconds

A Study on the Retrieval of River Turbidity Based on KOMPSAT-3/3A Images (KOMPSAT-3/3A 영상 기반 하천의 탁도 산출 연구)

  • Kim, Dahui;Won, You Jun;Han, Sangmyung;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1285-1300
    • /
    • 2022
  • Turbidity, the measure of the cloudiness of water, is used as an important index for water quality management. The turbidity can vary greatly in small river systems, which affects water quality in national rivers. Therefore, the generation of high-resolution spatial information on turbidity is very important. In this study, a turbidity retrieval model using the Korea Multi-Purpose Satellite-3 and -3A (KOMPSAT-3/3A) images was developed for high-resolution turbidity mapping of Han River system based on eXtreme Gradient Boosting (XGBoost) algorithm. To this end, the top of atmosphere (TOA) spectral reflectance was calculated from a total of 24 KOMPSAT-3/3A images and 150 Landsat-8 images. The Landsat-8 TOA spectral reflectance was cross-calibrated to the KOMPSAT-3/3A bands. The turbidity measured by the National Water Quality Monitoring Network was used as a reference dataset, and as input variables, the TOA spectral reflectance at the locations of in situ turbidity measurement, the spectral indices (the normalized difference vegetation index, normalized difference water index, and normalized difference turbidity index), and the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived atmospheric products(the atmospheric optical thickness, water vapor, and ozone) were used. Furthermore, by analyzing the KOMPSAT-3/3A TOA spectral reflectance of different turbidities, a new spectral index, new normalized difference turbidity index (nNDTI), was proposed, and it was added as an input variable to the turbidity retrieval model. The XGBoost model showed excellent performance for the retrieval of turbidity with a root mean square error (RMSE) of 2.70 NTU and a normalized RMSE (NRMSE) of 14.70% compared to in situ turbidity, in which the nNDTI proposed in this study was used as the most important variable. The developed turbidity retrieval model was applied to the KOMPSAT-3/3A images to map high-resolution river turbidity, and it was possible to analyze the spatiotemporal variations of turbidity. Through this study, we could confirm that the KOMPSAT-3/3A images are very useful for retrieving high-resolution and accurate spatial information on the river turbidity.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

Bladder volume variations of cervical cancer patient in radiation therapy using ultrasonography (초음파검사를 이용한 자궁경부암 환자의 방사선치료 시 방광 체적 변화)

  • Gong, Jong Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • Purpose : The bladder volume change was measured using ultrasonography for helping decrease the side effects and other organ variations in the location of radiation therapy for cervical cancer patients. An experiment was performed targeting patients who were treated with radiation therapy at PNUH within the period from September to December 2015. Materials and Methods : To maintain the bladder volume, each patient was instructed to drink 500 cc water before and after CT simulation, 60 minutes before the dry run. Also, the bladder volume was measured in each patient CT scan, and a 3D conformal therapy plan was designed. The bladder volumes measured before and after the CT simulation, dry run, and radiation treatment planning were compared and analyzed. Results : The average volume and average error of the bladder that were obtained from the measurement based on the CT scan images had the lowest standard deviation in the CT simulation. This means that the values that were obtained before and after the CT simulation were statistically relevant and correlative. Moreover, the bladder volume measured via ultrasonography was larger size, the average volume in the CT scan. But the values that were obtained Dry run and after the CT simulation were not statistically relevant. Conclusion : Drinking a certain amount of water helps a patient maintain his/her bladder volume for a dry run. Even then, it is difficult to maintain the bladder volume for the dry run. Also, whether or not the patients followed the directions for the dry run correctly is important.

  • PDF

REAL - TIME ORBIT DETERMINATION OF LOW EARTH ORBIT SATELLITES USING RADAR SYSTEM AND SGP4 MODEL (RADAR 시스템과 SGP4 모델을 이용한 저궤도 위성의 실시간 궤도결정)

  • 이재광;이성섭;윤재철;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • In case that we independently obtain orbital informations about the low earth satellites of foreign countries using radar systems, we develop the orbit determination algorithm for this purpose using a SGP4 model with an analytical orbit model and the extended Kalman filter with a real-time processing method. When the state vector is Keplerian orbital elements, singularity problems happen to compute partial derivative with respect to inclination and eccentricity orbit elements. To cope with this problem, we set state vector osculating to mean equinox and true equator cartesian elements with coordinate transformation. The state transition matrix and the covariance matrix are numerically computed using a SGP4 model. Observational measurements are the type of azimuth, elevation and range, filter process to each measurement in a lump. After analyzing performance of the developed orbit determination algorithm using TOPEX/POSEIDON POE(precision 0.bit Ephemeris), its position error has about 1 km. To be similar to performance of NORAD system that has up to 3km position accuracy during 7 days need to radar system performance that have accuracy within 0.1 degree for azimuth and elevation and 50m for range.

The Evaluation of Reliability for the Combined Refractive Power of Overlapping Trial Lenses (중첩된 시험렌즈의 합성굴절력에 대한 신뢰도 평가)

  • Lee, Hyung Kyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.263-276
    • /
    • 2015
  • Purpose: The current study aimed to evaluate the reliability for the combined refractive power when a spherical lens and a cylindrical lens were overlapped in a trial frame. Methods: The refractive powers, central thickness and peripheral thickness of spherical trial lenses and cylindrical lenses with negative power were measured. The combined refractive power of the spherical and cylindrical lenses was measured by auto lens meter. Measurement was repeated by changing the insertion order, and their results were further compared with the calculated combined refractive power. Results: There was no correlation between the variation of central and peripheral thickness in trial lenses and that of the lens power. Among 79 trial lenses, 3 trial lenses wasn't met the international standard. The refractive power calculated by Gullstrand's formula that could compensate vertex distance had smaller difference with the estimated power when compared with that calculated by thin lens formula however, it was significantly different from the estimated power. The refractive powers were generally apparent regardless of the insertion order of a spherical lens and a cylindrical lens: thin lens formula > actual measurements > Gullstrand's formula. The error was only found in cylindrical power calculated by Gullstrand's formula when inserted a spherical lens inside and a cylindrical lens outside however, the error was found in both of cylindrical and spherical powers calculated by Gullstrand's formula when inserted as a opposite order. By comparing actual measurements of equivalent spherical power, the accuracy was higher and the possibility of over-correction was lower when inserted a spherical lens inside and a cylindrical lens outside. Conclusions: From the results, those were revealed that the combined refractive power is influenced by the factors other than the vertex distance and the refractive power varies in accordance with the insertion order of a spherical lens and a cylindrical lens. Thus, it can be suggested that the establishment of standard for these is neccesaty.

Evaluation of 3DVH Software for the Patient Dose Analysis in TomoTherapy (토모테라피 환자 치료 선량 분석을 위한 3DVH 프로그램 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.201-207
    • /
    • 2015
  • The new function of 3DVH software for dose calculation inside the patient undergoing TomoTherapy treatment by applying the measured data obtained by ArcCHECK was recently released. In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated by the comparison of measured dose distribution with the dose calculated using 3DVH. The 2D diode detector array MapCHECK phantom was used for the TomoTherapy planning of virtual patient and for the measurement of the compared dose. The average pass rate of gamma evaluation between the measured dose in the MapCHECK phantom and the recalculated dose in 3DVH was $92.6{\pm}3.5%$, and the error was greater than the average pass rate, $99.0{\pm}1.2%$, in the gamma evaluation results with the dose calculated in TomoTherapy planning system. The error was also greater than that in the gamma evaluation results in the RapidArc analysis, which showed the average pass rate of $99.3{\pm}0.9%$. The evaluated accuracy of 3DVH software for TomoTherapy DQA process in this study seemed to have some uncertainty for the clinical use. It is recommended to perform a proper analysis before using the 3DVH software for dose recalculation of the patient in the TomoTherapy DQA process considering the initial application stage in clinical use.

Calibration of Pyranometer with Solar Radiation Intercomparison Observation at Research Institute for Radiation-Satellite, Gangneung-Wonju National University (강릉원주대학교 복사-위성연구소에서 실외 비교관측을 통한 전천일사계 교정)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae;Yoo, Myeong-Seon;Lee, Yong-Joo;Jang, Jeong-Pil
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.135-148
    • /
    • 2019
  • Although the technology for the observation of solar radiation is rapidly developing worldwide, in Korea the guidelines for comparing observations of solar radiation are only now under preparation. In this study, a procedure for intercomparison observations of solar radiation was established which accounts for meteorological and geographical conditions. The intercomparisons among observations by national reference pyranometers were carried out at the Asia Regional Radiation Center, Japan, in 2017. Recently, the result of the calibration of the reference pyranometer of the Korean Meteorological Administration (KMA) has been reported. Using the KMA pyranometer as a reference, comparisons between observations and calibrations were carried out for the standard (B to J) pyranometers of the KMA, and for the reference (A) and the standard pyranometers of the Gangneung-Wonju National University. The intercomparisons were carried out between October 24 and October 25, 2018. The sensitivity constants were adjusted according to the results of the data analysis performed on October 24. On October 25, a post-comparison observation was also performed, and the data of the participating pyranometers were verified. The sensitivity constants were calculated using only data corresponding to a solar radiation of $450.0W\;m^{-2}$ or higher. The B and I pyranometers exhibited a small error (${\pm}0.50W\;m^{-2}$), and the applied sensitivity constants were in the range $0.08-0.16{\mu}V(W\;m^{-2})^{-1}$. For the C pyranometer, the adjustment of the sensitivity constant was the largest, i.e., $-0.16{\mu}V(W\;m^{-2})^{-1}$. As a result, the nine candidate pyranometers could be calibrated with an average error of $0.06W\;m^{-2}$ (0.08%) with respect to the KMA reference, which falls within the allowed tolerance of ${\pm}1.00%$ (or ${\pm}4.50W\;m^{-2}$).

A Study on Utilization 3D Shape Pointcloud without GCPs using UAV images (UAV 영상을 이용한 무기준점 3D 형상 점군데이터 활용 연구)

  • Kim, Min-Chul;Yoon, Hyuk-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • Recently, many studies have examined UAVs (unmanned aerial vehicles), which can replace and supplement existing surveying sensors, systems, and images. This study focused on the use of UAV images and assessed the possibility of utilization in areas where it is difficult to obtain GCPs (ground control points), such as disasters. Therefore, 3D (dimensional) pointcloud data were generated using UAV images and the absolute/relative accuracy of the generated model data using GCPs and without GCPs was assessed. The results showed the 3D shape pointcloud generated by UAV image matching was proven if the relative accuracy was set, regardless of whether GCPs were used or not; the quantitative measurement error rate was within 1%. Even if the absolute accuracy was low, the 3D shape pointcloud that had been post processed quickly was sufficient to be utilized when it is impossible to acquire GCPs or urgent analysis is required. In particular, the results can obtain quantitative measurements and meaningful data, such as the length and area, even in cases with the ground reference point surveying and post-process.