• Title/Summary/Keyword: Error of Measurement

Search Result 3,868, Processing Time 0.033 seconds

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction (데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 )

  • Byoungwook Kim;Ji Su Park;Hong-Jun Jang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.133-140
    • /
    • 2023
  • The performance of lithium ion batteries depends on the usage environment and the combination ratio of cathode materials. In order to develop a high-performance lithium-ion battery, it is necessary to manufacture the battery and measure its performance while varying the cathode material ratio. However, it takes a lot of time and money to directly develop batteries and measure their performance for all combinations of variables. Therefore, research to predict the performance of a battery using an artificial intelligence model has been actively conducted. However, since measurement experiments were conducted with the same battery in the existing published battery data, the cathode material combination ratio was fixed and was not included as a data attribute. In this paper, we define a training data model required to develop an artificial intelligence model that can predict battery performance according to the combination ratio of cathode materials. We analyzed the factors that can affect the performance of lithium-ion batteries and defined the mass of each cathode material and battery usage environment (cycle, current, temperature, time) as input data and the battery power and capacity as target data. In the battery data in different experimental environments, each battery data maintained a unique pattern, and the battery classification model showed that each battery was classified with an error of about 2%.

Receiving System Design of ILS Navigation Signal Using SDR (SDR을 이용한 ILS 항행신호 수신 시스템 설계)

  • Minsung Kim;Ji-hye Kang;Kyung Heon Koo;Kyung-Soon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.254-261
    • /
    • 2024
  • Accurate guidance during landing and take-off is important, and instrument landing system (ILS) has been used for stability and verification. Regular inspections are conducted for stable operation, and there is research to perform inspection using drones in addition to ground vehicles and measurement aircraft. Using SDR and single board computer, which can receive wide frequency range, we designed a small system that receives and processes localizer signals through GNU Radio. To check signal processing characteristics through GNU Radio, we simulated with MATLAB Simulink and confirmed the theoretical values. Difference in depth of modulation (DDM) and approach angle can be calculated when the aircraft enters the runway. And GNU Radio implemented real-time signal processing wirelessly using transmission control protocol (TCP). This gives the results within the error of 0.5% when the aircraft entered the runway center line and 0.27% for the angle of 1° degree. Compared to the inspecting and maintaining ILS signals using aircraft or ground vehicles, it is possible to implement a receiving system using small SDR that can be mounted for drone.

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.

A Study on the Design of Digital Frequency Discriminator with 3-Channel Delay Lines (3채널 지연선을 가진 디지털주파수판별기의 설계에 관한 연구)

  • Kim, Seung-Woo;Choi, Jae-In;Chin, Hui-cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.44-52
    • /
    • 2017
  • In this paper, we propose a DFD (Digital Frequency Discriminator) design that has better frequency discrimination and a smaller size. Electronic warfare equipment can analyze different types of radar signal such as those based on Frequency, Pulse Width, Time Of Arrival, Pulse Amplitude, Angle Of Arrival and Modulation On Pulse. In order for electronic warfare equipment to analyze radar signals with a narrow pulse width (less than 100ns), they need to have a special receiver structure called IFM (Instantaneous Frequency Measurement). The DFD (Digital Frequency Discriminator) is usually used for the IFM. Because the existing DFDs are composed of separate circuit devices, they are bulky, heavy, and expensive. To remedy these shortcomings, we use a three delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$) in the DFD, instead of the four delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$, $64{\lambda}$) generally used in the existing DFDs, and apply the microwave integrated circuit method. To enhance the frequency discrimination, we detect the pulse amplitude and perform temperature correction. The proposed DFD has a frequency discrimination error of less than 1.5MHz, affording it better performance than imported DFDs.

Characterization of Electrical Crosstalk in 1.25 Gbps Optoelectrical Triplex Transceiver Module for Ethernet Passive Optical Networks (이더넷 광 네트워크 구현을 위한 1.25 Gbps 광전 트라이플렉스 트랜시버 모듈의 전기적 혼신의 분석)

  • Kim Sung-Il;Lee Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.25-34
    • /
    • 2005
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a triplex transceiver module for ethernet Passive optical networks(EPONS). And we improved the electrical crosstalk levels using Dummy ground lines with signal lines. The triplex transceiver module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and a analog photodetector as a community antenna television signal receiver. And there are integrated on silicon substrate. The digital receiver and analog receiver sensitivity have to meet -24 dBm at $BER=10^{-l2}$ and -7.7 dBm at 44 dB SNR. And the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the Dummy ground line with $100\;{\mu}m$ space from signal lines and separates 4 mm among devices respectively, is satisfied the electrical crosstalk level compared to simple structure. This proposed structure can be easily implemented with design convenience and greatly reduced the silicon substrate size about $50\%$.

A Study on the Efficient Application for Cadastral Surveying of RTK-GPS (RTK-GPS의 지적측량에 효율적 적용 연구)

  • Hong, Sung-Eon;Lee, Woo-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • The study conducted the measurement of RTK-GPS with changing the number of observation as the method to differ reference stations of RTK-GPS. Also it aimed to suggest an effective application plan for cadastral surveying based on the accuracy analysis accordingly. According to the result of selecting the study region, observing with different reference stations, and comparing with previous TS performance, the 1st reference station was calculated as ${\pm}0.024m$ for x-coordinate's RMSE and ${\pm}0.029m$ for y-coordinate's RMSE, and the 2nd reference station was calculated as ${\pm}0.040m$ for x-coordinate's RMSE and ${\pm}0.029m$ for y-coordinate's RMSE. All these results (the 1st and the 2nd reference stations) are allowed as acceptable performance within the margin of error according to the existing cadastral regulations, and there was no significant difference between two performances. Therefore, unless there was no problem in receiving GPS satellite data, it would be possible to secure stable performance enough with 1 observation. Depending on surveying environment that has possible problems in receiving data, however, 2 or more observations would be necessary to secure stable performance.

Effective PPG Signal Processing Method for Detecting Emotional Stimulus (감성 자극 판단을 위한 효과적인 PPG 신호 처리 방법)

  • Oh, Dong-Gi;Min, Byung-Seok;Kwon, Sung-Oh;Kim, Hyun-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.393-402
    • /
    • 2012
  • In this study, we propose a signal processing algorithm to measure the arousal level of a human subject using a PPG(Photoplethysmography) sensor. From the measured PPG signals, the arousal level is determined by PPI(Pulse to Pulse Interval) and discrete-time signal processing. We ran psychophysical experiments displaying visual stimuli on TV display while measuring PPG signal from a finger, where the nature landscape scenes were used for restorative effect, and the urban environments were used to stimulate the stress. However, the measured PPG signals may include noise due to subject movement and measurement error, which results in incorrect detections. In this paper, to mitigate the noise impact on stimulus detection, we propose a detecting algorithm using digital signal processing methods and statistics of measured signals. A filter is adopted to remove a high frequency noise and adaptively designed taking into account the statistics of the measured PPG signals. Moreover we employ a hysteresis method to reduce the distortion of PPI in decision of emotional. Via experiment, we show that the proposed scheme reduces signal noise and improves stimulus detection.

Numerical Research on the Lock-in Compensation Method of a Ring Laser Gyroscope for Reducing INS Alignment Time (관성항법장치 초기정렬시간 단축을 위한 링레이저 자이로 lock-in오차 보상방법의 수치해석적인 분석)

  • Shim, Kyu-Min;Jang, Suk-Won;Paik, Bok-Soo;Chung, Tae-Ho;Moon, Hong-Key
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.275-282
    • /
    • 2009
  • Generally, the sinusoidal cavity dither is adopted to ring laser gyroscope for eliminating the lock-in which is non-linear effect at the small rotation input. Despite this method, there are some remained errors which are generated at the dither turnaround, and those errors produce random walk which is a general character of a ring laser gyroscope. As one of the numerous research results for compensating these errors, there is a special lock-in compensation method which is the method of error estimation and compensation by comparing the beat signal periods of before and after the dither turnarounds. In this paper, by ring laser gyroscope modeling and numerical analysis, we verified the theoretical validity and confirmed the effectiveness of this method in expectation of the possible beat signal measurement time resolution. As a result, we confirmed the random walk decreases from a-half to a-third by this lock-in compensation method. So, it is expected to be a remarkable method for reducing the INS alignment time.

Three Level Buck Converter Utilizing Multi-bit Flying Capacitor Voltage Control (멀티비트 플라잉 커패시터의 전압제어를 이용한 3-레벨 벅 변환기)

  • So, Jin-Woo;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1006-1011
    • /
    • 2018
  • This paper proposes a three level buck converter utilizing multi-bit flying capacitor voltage control. The conventional three-level buck converter can not control the flying capacitor voltage, so that the operation is unstable or the circuit for controlling the flying capacitor voltage can not be applied to the PWM mode. Also when the load current is increased, an error occurs in the inductor voltage. The proposed structure can control the flying capacitor voltage in PWM mode by using differential difference amplifier and common mode feedback circuit. In addition, this paper proposes a 3bit flying capacitor voltage control circuit to optimize the operation of the three level buck converter depending on the load current, and a triangular wave generation circuit using the schmitt trigger circuit. The proposed 3-level buck converter is designed in $0.18{\mu}m$ CMOS process and has an input voltage range of 2.7V~3.6V and an output voltage range of 0.7V~2.4V. The operating frequency is 2MHz, the load current range is 30mA to 500mA, and the output voltage ripple is measured up to 32.5mV. The measurement results show a maximum power conversion efficiency of 85% at a load current of 130 mA.