• Title/Summary/Keyword: Error monitoring system

Search Result 589, Processing Time 0.031 seconds

Quality Monitoring Method Analysis for GNSS Ground Station Monitoring and Control Subsystem (위성항법 지상국 감시제어시스템 품질 감시 기법 분석)

  • Jeong, Seong-Kyun;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • GNSS(Global Navigation Satellite System) Ground Station performs GNSS signal acquisition and processing. This system generates error correction information and distributes them to GNSS users. GNSS Ground Station consists of sensor station which contains receiver and meteorological sensor, monitoring and control subsystem which monitors and controls sensor station, control center which generates error correction information, and uplink station which transmits correction information to navigation satellites. Monitoring and control subsystem acquires and processes navigation data from sensor station. The processed data is transmitted to GNSS control center. Monitoring and control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation determination module, independent quality monitoring module, and system maintenance and management module. The independent quality monitoring module inspects navigation signal, data, and measurement. This paper introduces independent quality monitoring and performs the analysis using measurement data.

A Study on Real-Time Slope Monitoring System using 3-axis Acceleration

  • Yoo, So-Wol;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.232-239
    • /
    • 2017
  • The researcher set up multiple sensor units on the road slope such as national highway and highway where there is a possibility of loss, and using the acceleration sensor built into the sensor unit the researcher will sense whether the inclination of the road slope occur in real time, and Based on the sensed data, the researcher tries to implement a system that detects collapse of road slope and dangerous situation. In the experiment of measuring the error between the actual measurement time and the judgment time of the monitoring system when judging the warning of the sensor and falling rock detection by using the acceleration sensor, the error between measurement time and the judgment time at the sensor warning was 0.34 seconds on average, and an error between measurement time and judgment time at falling rock detection was 0.21 seconds on average. The error is relatively small, the accuracy is high, and thus the change of the slope can be clearly judged.

A Study on Indoor Air Quality Monitoring System for Subway Stations (지하역사의 공기질 감시 시스템 구성에 관한 연구)

  • Lee, Byung-Seok;Hwang, Sun-Ju;Lee, Joon-Hwa;Kim, Gyu-Sik;Kim, Jo-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.48-50
    • /
    • 2009
  • This paper presents an IAQ(Indoor Air Quality) Monitoring System using equipments for measurement of fine Particle($PM1{\sim}PM10$), $CO_2$, VOCs(Volatile Organic Compounds), temperature and humidity for IAQ monitoring of subway station which millions of people use a day. The necessity of IAQ monitoring system is getting increased for more effective subway station monitoring in line with the recent government's regulation for IAQ is reinforcing. Subway Station is an unusual case. The structure of subway station is closed and complicated. Therefore when data of equipments are transferred, transmission error can happen occasionally. To prevent transmission error, an IAQ Monitoring System is needed the appropriate position and selection of equipments or sensor module. In addition IT(Information Technology) can be utilized like "WiBro(Wireless Broadband)" and "GateWay" for facilitate movement of data and construction of IAQ monitoring system of subway station.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

Position Controller of Rail Guided Unmanned Monitoring System with the Driving Slip Compensator (주행 슬립 오차 보상기를 가지는 레일 가이드 무인 설비 감시 장치의 위치 제어기)

  • Bae, Jongnam;Kwak, Yunchang;Lee, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.792-799
    • /
    • 2017
  • The real time unmanned monitoring system of an equipment's internal parts and condition requires the monitoring device to be able to stop at a set location on the rail. However, due to the slip between the driving surface and the roller, an error occurs between the actual position and the command position. In this paper, a method to compensate the position error due to the roller slip is proposed. A proximity sensor located at both ends of the rail detects the starting point and the maximum position pulse, linearly compensating the error between the angular position of the motor and the mechanically fixed starting and maximum position pulse of the rail in forward and reverse direction. Moreover, unlike the existing servo position controller, the motor adopts the position detection method of Hall sensor in BLDC (Brushless DC) and applies an algorithm for low-speed driving so that a stable position control is possible. The proposed rail guided unmanned monitoring system with driving slip compensator was tested to verify the effectiveness.

Study on the Supervisory Monitoring System for Substation Automation (변전소 자동화를 위한 상태감시 시스템에 관한 연구)

  • Lee, Heung-Jae;Lee, Eun-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.84-91
    • /
    • 2014
  • This paper introduces the application of supervisory monitoring system for substation automation based on IEC 61850. The objective of proposed system is detection of such a malfunction or degradation of devices. The supervisory monitoring procedure consists of a two step - topology processor and state estimation. The topology processor using artificial intelligence is a preprocessing step of state estimation. Topology processor identifies the topology structure of switches in substation and detects an error of ON/OFF state data. The state estimation is an algorithm that minimizes an error between optimal estimation values and real values. The proposed system is applied to standard digital substation based on IEC 61850 for performance verification.

Realtime Monitoring System using AJAX + XML (AJAX+XML 기반의 모니터링 시스템)

  • Choi, Yun Jeong;Park, Seung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2009
  • Nowadays, according to rapid development of computing environments, information processing and analysis system are very interesting research area. As a viewpoint of data preparation-processing-analysis in knowledge technology, the goal of automated information system is to satisfy high reliability and confidence and to minimize of human-administrator intervention. In addition, we expect the system which can deal with problem and abnormal error effectively as a fault detection and fault tolerance. In this paper, we design a monitoring system as follows. A productive monitoring information from various systems has unstructured forms and characteristics and crawls informative data by conditions and gathering rules. For representing of monitering information which requested by administrator, running-status can be able to check dynamically and systematic like connection/closed status in real-time. Our proposed system can easily correct and processing for monitoring information from various type of server and support to make objective judgement and analysis of administrator under operative target of information system. We implement semi-realtime monitering system using AJAX technology for dynamic browsing of web information and information processing using XML and XPATH. We apply our system to SMS server for checking running status and the system shows that has high utility and reliability.

Comparative Analysis on the Mock-ups' Configuration and Monitoring Protocol System of Advanced Daylighting Systems for Daylighting Experiment - Focused on IEA SHC Task21- (첨단채광시스템 실험용 Mock-Up 모형의 형상 및 모니터링 프로토콜 시스템에 관한 비교분석 - IEA SHC Task21을 중심으로-)

  • Jeong, In-Young;Choi, Sang-Hyun;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2004
  • Innovative daylighting systems in buildings in various climatic zones around the world have been developed under the IEA SHC Task21. The performance assessment were obtained by monitoring the most systems using full-scale test model rooms or actual buildings under real sky conditions. This study aims to analyze the configuration and monitoring system of the nine Mock-up models of the IEA SHC Task21 comparatively. For the purpose, the geometry of the test rooms (length, width, height, window area, glazed area and occupied), reflectance of walls, floor and ceiling, transmittance of glazing (transmittance for hemispherical irradiation, normal irradiation and U-value) were compared. And equipment for measurement (manufacturer, range, calibration, maximum calibration error, cosine response error, fatigue error), and data acquisition system (manufacturer, type, number of differential analogue input channels, A/D converter resolution in bits, data acquisition software) were also analyzed comparatively. Some findings of these experimental methodology of standard monitoring have been proven to be a valuable one for future assessment of advanced daylighting systems in our country.

Hybrid Real-time Monitoring System Using2D Vision and 3D Action Recognition (2D 비전과 3D 동작인식을 결합한 하이브리드 실시간 모니터링 시스템)

  • Lim, Jong Heon;Sung, Man Kyu;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.583-598
    • /
    • 2015
  • We need many assembly lines to produce industrial product such as automobiles that require a lot of composited parts. Big portion of such assembly line are still operated by manual works of human. Such manual works sometimes cause critical error that may produce artifacts. Also, once the assembly is completed, it is really hard to verify whether of not the product has some error. In this paper, for monitoring behaviors of manual human work in an assembly line automatically, we proposes a realtime hybrid monitoring system that combines 2D vision sensor tracking technique with 3D motion recognition sensors.

Quality Check Monitoring System for Advancing the Yield Rate based on Sensor (베어링 생산수율 향상을 위한 센서기반 품질 체크 모니터링 장치)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents the monitoring method of machining error and quality check to improve the productivity of boring manufacturing process. Machining error usually appears as the offset of spatial location of actual cutting path compared to ideal cutting path. In order to monitor an error of workpiece, multiple factors affecting quality of boring, such as distortion of workpiece, clamping error, radial rotation error of the spindle and motion error of machine tools, were took into account. To verify the productive quality, we propose the quality check system. The system based on IT convergence analyzes the process error rate and saves the analyzed data in memory. Also, these play important roles in detecting an inferior production goods and can decrease the production cost and loss of bearing.