• Title/Summary/Keyword: Error level

Search Result 2,511, Processing Time 0.029 seconds

Effects of Intelligence Ability on Continuous Performance Test (지적 능력이 연속수행과제(CPT) 수행에 미치는 영향)

  • Lee Ji-Yeon;Cho A-Ra;Kim Bong-Seog;Kim Joo-Hee
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.17 no.2
    • /
    • pp.163-169
    • /
    • 2006
  • Objectives : The study was conducted to investigate the effect of intelligence ability on attention using Continuous Performance Test (CPT). Methods : 56 children with ADHD (52 boys, 4 girls) and 41 children in normal (28 boys, 13 girls) were sampled, their age range was 7 to 15. They performed IQ test and ADHD Diagnostic System (ADS) in order to examine intelligence and attention. Participants were divided into normal group and ADHD group, average IQ level children and superior IQ level children. Then ADS variables (omission error, commission error, reaction time, reaction time deviation, response sensitivity, and response criterion) were analyzed. Results : There was no significant interaction effect between group (normal, ADHD) and intelligence (average, superior). But there was significant difference between normal group and ADHD group in omission error, commission error, reaction time deviation, and response sensitivity. Also average level IQ group had significantly showed more omission, greater reaction time deviation, and lower response sensitivity than superior level IQ group. Conclusion : ADHD group has attention deficit than normal group, and CPT is available tool to detect attention problems. These findings indicate that intelligence can contaminate inattention and cognitive impulsivity thus it compensates for attention deficit. And it suggests that intelligence effect is considered in analyzing CPT in ADHD children.

  • PDF

Critical Thinking Disposition, Medication Error Risk Level of High-alert Medication and Medication Safety Competency among Intensive Care Unit Nurses (중환자실 간호사의 비판적 사고성향, 고위험약물 투약오류 위험수준 및 투약안전역량)

  • Lee, Yoon Hee;Lee, Youngjin;Ahn, Jeong-Ah;Kim, Hee Jun
    • Journal of Korean Critical Care Nursing
    • /
    • v.15 no.2
    • /
    • pp.1-13
    • /
    • 2022
  • Purpose : The study aimed to identify relationship among intensive care unit (ICU) nurses' critical thinking disposition, medication error risk level of high-alert medication, and medication safety competency, as well as the factors affecting medication safety competency. Methods : The participants were 266 ICU nurses of one higher-tier general hospital and one general hospital in Province. The data were collected using structured self-administered questionnaire from August 10 to August 31, 2021. Measurements included the critical thinking disposition questionnaire, nurses's knowledge of high-alert medication questionnaire, the medication safety competency scale. Data were analyzed using hierarchical multiple regressions using SPSS/WIN 28.0. Results : In the multiple regression analysis, the medication safety competence has a statistically significant correlation with the working department, the critical thinking disposition, and medication error risk level of high-alert medication. Conclusion : Based on the results of this study, it is suggested to develop and apply an educational strategy that can strengthen the knowledge and skills of critical thinking disposition and medication error risk level of high-alert medication to improve the ICU nurse's medication safety competency.

Improved RRS Logical Architecture using Genetic Algorithm (유전자 알고리즘 적용을 통한 향상된 RRS Logic 개발)

  • Shim, Hyo Sub;Jung, Jae Chun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-125
    • /
    • 2016
  • An improved RRS (Reactor Regulating System) logic is implemented in this work using systems engineering approach along with GA (Genetic Algorithm) deemed as providing an optimal solution to a given system. The current system works desirably and has been contributed to the safe and stable NPP operation. However, during the ascent and decent section of the reactor power, the RRS output reveals a relatively high steady state error and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this research proposes applying genetic algorithm to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse-engineering is implemented to build a Simulink-based RRS model and re-engineering is followed to apply the GA and to produce a newly-configured RRS generating an output that has a reduced steady state error and diminished overshoot level.

A Low-Complexity CLSIC-LMMSE-Based Multi-User Detection Algorithm for Coded MIMO Systems with High Order Modulation

  • Xu, Jin;Zhang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1954-1971
    • /
    • 2017
  • In this work, first, a multiuser detection (MUD) algorithm based on component-level soft interference cancellation and linear minimum mean square error (CLSIC-LMMSE) is proposed, which can enhance the bit error ratio (BER) performance of the traditional SIC-LMMSE-based MUD by mitigating error propagation. Second, for non-binary low density parity check (NB-LDPC) coded high-order modulation systems, when the proposed algorithm is integrated with partial mapping, the receiver with iterative detection and decoding (IDD) achieves not only better BER performance but also significantly computational complexity reduction over the traditional SIC-LMMSE-based IDD scheme. Extrinsic information transfer chart (EXIT) analysis and numerical simulations are both used to support the conclusions.

Improved reactor regulating system logical architecture using genetic algorithm

  • Shim, Hyo-Sub;Jung, Jae-Chun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1696-1710
    • /
    • 2017
  • An improved Reactor Regulating System (RRS) logic architecture, which is combined with genetic algorithm (GA), is implemented in this work. It is devised to provide an optimal solution to the current RRS. The current system works desirably and has contributed to safe and stable nuclear power plant operation. However, during the ascent and descent section of the reactor power, the RRS output reveals a relatively high steady-state error, and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this work proposes to apply GA to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse engineering is implemented to build a Simulink-based RRS model. Reengineering is followed to produce a newly configured RRS to generate an output that has a reduced steady-state error and diminished overshoot level. A full-scope APR1400 simulator is used to examine the dynamic behaviors of RRS and to build the RRS Simulink model.

Error Analysis of Quadrature Coherent Detector System (직교 동기 검파방식의 열화특성에 대한 해석)

  • 백주기;이승대;이병선;진연강
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.113-119
    • /
    • 1998
  • In this paper, the error sidelobe level and signal to noise loss from the numerical analysis using the modelling of quadrature coherent detector in the case that the channel imbalance and with local oscillator leakage is considered. From the numerical results, the error sidelobe level and signal to noise loss that with the gain and phase imbalance(0.8(dB)J5(dog)) is (-21.322[dB], -0.0071[dB]), (-11.6839[dB], -0.0059[dB]) in the case that the channel imbalance and with local oscillator leakage is considered.

  • PDF

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

Determining the complexity level of proceduralized tasks in a digitalized main control room using the TACOM measure

  • Inseok Jang;Jinkyun Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4170-4180
    • /
    • 2022
  • The task complexity (TACOM) measure was previously developed to quantify the complexity of proceduralized tasks conducted by nuclear power plant operators. Following the development of the TACOM measure, its appropriateness has been validated by investigating the relationship between TACOM scores and three kinds of human performance data, namely response times, human error probabilities, and subjective workload scores. However, the information reflected in quantified TACOM scores is still insufficient to determine the levels of complexity of proceduralized tasks for human reliability analysis (HRA) applications. In this regard, the objective of this study is to suggest criteria for determining the levels of task complexity based on logistic regression between human error occurrences in digitalized main control rooms and TACOM scores. Analysis results confirmed that the likelihood of human error occurrence according to the TACOM score is secured. This result strongly implies that the TACOM measure can be used to identify the levels of task complexity, which could be applicable to various research domains including HRA.

Measurement Error Variance Estimation Based on Complex Survey Data with Subsample Re-Measurements

  • Heo, Sunyeong;Eltinge, John L.
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.553-566
    • /
    • 2003
  • In many cases, the measurement error variances may be functions of the unknown true values or related covariates. This paper considers design-based estimators of the parameters of these variance functions based on the within-unit sample variances. This paper devotes to: (1) define an error scale factor $\delta$; (2) develop estimators of the parameters of the linear measurement error variance function of the true values under large-sample and small-error conditions; (3) use propensity methods to adjust survey weights to account for possible selection effects at the replicate level. The proposed methods are applied to medical examination data from the U.S. Third National Health and Nutrition Examination Survey (NHANES III).

Error Analysis of the Multi-Frequency Coning Motion with Dithered Ring Laser Gyro INS (Dither를 가지는 링레이저 자이로 항법시스템의 복합 주파수 원추운동 오차 해석)

  • Kim, Gwang-Jin;Lee, Tae-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.697-702
    • /
    • 2001
  • The ring laser gyro(RLG) has been used extensively in strapdown inertial navigation system(SDINS) because of the apparent of having wide dynamic range, digital output and high accuracy. The dithered RLG system has dynamic motion at sensor level, caused by the dithering motion to overcome the lock-in threshold. In this case, an attitude error is produced by not only the true coning of the vehicle motion but also the pseudo coning of the sensor motion. This paper describes the definition of the multi-frequency coning motion and its noncommutativity error to reject the pseudo coning error produced by the sensor motion such as the dithered RLG. The simulation results are presented to minimize the multi-frequency coning error.

  • PDF