• Title/Summary/Keyword: Error backpropagation

Search Result 133, Processing Time 0.039 seconds

Ray backpropagation-based ship localization (음선 역전파 기반의 선박 위치 추정)

  • Cho, Seong-il;Byun, Gihoon;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.196-205
    • /
    • 2018
  • This paper presents an algorithm for passive localization of a ship by applying the ray back-propagation technique to the ship radiation noise data. The previous method [S. H. Abadi, D. Rouseff and D. R. Dowling, J. Acoust. Soc. Am. 131, 2599-2610 (2012)] estimates the position of a sound source in the near-field environment with no array tilt by using the RBD (Ray-based Blind Deconvolution) and ray back-propagation techniques. However, when there exists an array tilt, the above method leads to a large position estimation error. In order to overcome the problem, this study proposes an algorithm that estimates the position of a sound source by correcting the array tilt using the RBD and ray back-propagation techniques. The proposed algorithm was verified by using the ship noise of SAVEX15 (Shallow-water Acoustic Variability EXperiment in 2015) experimental data.

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.

An accelerated Levenberg-Marquardt algorithm for feedforward network

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.1027-1035
    • /
    • 2012
  • This paper proposes a new Levenberg-Marquardt algorithm that is accelerated by adjusting a Jacobian matrix and a quasi-Hessian matrix. The proposed method partitions the Jacobian matrix into block matrices and employs the inverse of a partitioned matrix to find the inverse of the quasi-Hessian matrix. Our method can avoid expensive operations and save memory in calculating the inverse of the quasi-Hessian matrix. It can shorten the training time for fast convergence. In our results tested in a large application, we were able to save about 20% of the training time than other algorithms.

A Neural Network Based on Stochastic Computation using the Ratio of the Number of Ones and Zeros in the Pulse Stream (펄스열에서 1인 펄스수와 0인 펄스수의 비를 이용하여 확률연산을 하는 신경회로망)

  • 민승재;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.211-218
    • /
    • 1994
  • Stochastic computation employs random pulse streams to represent numbers. In this paper, we study a new method to implement the number system which uses the ratio of the numbers of ones and zeros in the pulse streams. In this number system. if P is the probability that a pulse is one in a pulse stream then the number X represented by the pulse stream is defined as P/(1-P). We propose circuits to implement the basic operations such as addition multiplication and sigmoid function with this number system and examine the error characteristics of such operations in stochastic computation. We also propose a neuron model and derive a learning algorithm based on backpropagation for the 3-layered feedforward neural networks. We apply this learning algorithm to a digit recognition problem. To analyze the results, we discuss the errors due to the variance of the random pulse streams and the quantization noise of finite length register.

  • PDF

AC Servo Motor Control Using Neuro Observer (뉴로 관측기를 이용한 교류서보 전동기 제어)

  • Yoon, Kwang-Ho;Kim, Sang-Hoon;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.69-71
    • /
    • 2004
  • DC servo motors have a defect that they need a periodical maintenance because of a brush commutation and also they have a difficulty at high speed operation. In this reason, the use of AC Servo motors are increasing these days. In this paper, a proposed neuro observer is applied to speed control of AC servo motor. The proposed observer complement a problem that occur from increase of gain of High-gain observer in proportion to the square number of observable state variables. And also, the proposed observer can tune the gain obtained by differentiating observational error automatically by using the backpropagation training method to stabilize the observational speed. The excellence and feasibility of the proposed observer is proved by making a comparison test between the proposed observer and the others applied to the same AC servo motor.

  • PDF

A Study of ECG Based Cardiac Diseases Diagnoses (심전도 신호를 이용한 심장 질환 진단에 관한 연구)

  • Kim, Hyun-Dong;Yoon, Jae-Bok;Kim, Hyun-Dong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF

Design of Self Recurrent Neuro-Fuzzy Controller for Stabilization of Nonlinear System (비선형 시스템의 안정화를 위한 자기순환 뉴로-퍼지 제어기의 설계)

  • Tak, Han-Ho;Lee, In-Yong;Lee, Seong-Hyeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.390-393
    • /
    • 2007
  • In this paper, applications of self recurrent neuro-fuzzy controller to stabilization of nonlinear system are considered. The architecture of self recurrent neuro-fuzzy controller is fix layer, and the hidden layer is comprised of self recurrent architecture. Also, generalized dynamic error-backpropagation algorithm is used for the learning of the self recurrent neuro-fuzzy controller. To demonstrate the efficiency of the self recurrent neuro-fuzzy control algorithm presented in this study, a self recurrent neuro-fuzzy controller was designed and then a comparative analysis was made with LQR controller through an simulation.

  • PDF

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

AC Servo Motor Control Using intelligent Observer (지능형 관측기 이용한 교류서보 전동기 제어)

  • Yoon, Kwang-Ho;Kim, Sang-Hoon;Kim, Lark-Kyo;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.69-71
    • /
    • 2005
  • DC servo motors have a defect that they need a periodical maintenance because of a brush commutation and also they have a difficulty at high speed operation. In this reason, the use of AC Servo motors are increasing these days. In this paper, a proposed neuro observer is applied to speed control of AC servo motor. The proposed observer complement a problem that occur from increase of gain of High-gain observer in proportion to the square number of observable state variables. And also, the proposed observer can tune the gain obtained by differentiating observational error automatically by using the backpropagation training method to stabilize the observational speed. The excellence and feasibility of the proposed observer is proved by making a comparison test between the proposed observer and the others applied to the same AC servo motor.

  • PDF

Control of a cart system using genetic algorithm

  • Kim, Sung-Soo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.385-389
    • /
    • 1994
  • So far many researches have studied to control a cart system with a pole on the top of itself (forwards we call it simply a cart system) which is movable only to the directions to which a cart moves, using neural networks and genetic algorithms. Especially which it wag solved by genetic algorithms, it was possible to control a cart system more robustly than ordinary methods using neural networks but it had problems too, i.e., the control time to be achieved was short and the processing time for it was long. However we could control a cart system using standard genetic algorithm longer than ordinary neural network methods (for example error backpropagation) and could see that robust control was possible. Computer simulation was performed through the personal computer and the results showed the possibility of real time control because the cpu time which was occupied by processes was relatively short.

  • PDF