• Title/Summary/Keyword: Error Response Curve

Search Result 46, Processing Time 0.024 seconds

A P-Parallel Controller Design based on P-Control Ramp Response in Machine Tool (비례제어 경사응답에 기반한 공작기계의 비례-병렬 제어기 설계)

  • Gil, Hyeong-Gyeun;Lee, Gun-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.780-785
    • /
    • 2004
  • The work presented here deals with controller design by graphical method based on proportional control ramp response. The design aims at the improvement of transient response, disturbance rejection capability, steady-state error reduction with stability preservation. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

Controller Design by Error Shape and Steady-State Error Analysis for a Feed Drive System in CNC Milling Machine (CNC 밀링머신 이송장치의 오차유형 및 정상상태 오차해석에 의한 제어기 설계)

  • Lee Gun-Bok;Gil Hyeong-Gyeun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.52-60
    • /
    • 2005
  • This paper deals with the position control fur a feed drive system in CNC milling machine, which utilizes a modified error signal for the elimination of steady-state error. A linear time-invariant (LTI) system has consistent properties in response to standard test signal inputs. Those also appear in an error curve acquired from the response. From such properties, constructed is an error model for the position control of the feed drive. And then added is the output of the error model to the current error signal. Consequently the resulting proportional control system brings performance improvement in view of the steady-state error. The effectiveness of the proposed scheme is confirmed through simulations and experiments.

Development of a Position Control Algorithm for Feed Drives in Machine Tools Using an Error Model (오차모델을 이용한 공작기계 이송장치의 위치제어 알고리듬 개발)

  • Lee Gun Bok;Gil Hyeong Gyeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.115-123
    • /
    • 2005
  • This paper presents the development of an algorithm for position control of feed drives in machine tools. The algorithm is constructed through an experimental method based on proportional control with a ramp input. In the first step of designing, a tracking-error curve is generated with the proportional control, and then an error model is decided to reduce the tracking error, Next, the output signal of the error model is added to the current error signal to yield the actuating error signal. The effectiveness of the proposed scheme is confirmed through simulation and experiments.

A Controller Design Using Error Model for Line Type Paths in Machine Tool (공작기계의 선형경로에 대한 오차모델을 이용한 제어기 설계)

  • 길형균;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.64-69
    • /
    • 2004
  • The work presented here deals with controller design using error model constructed with proportional control ramp response. The design aims at the improvement of transient response, steady-state error reduction with stability preservation, generation of the consistent contour error through the proportional gain regulation of a mismatched system. The first step is to generate tracking-error curve with proportional control only and decide the added error signal shape on the error curve. The next is to construct a table for the steady-state loop gain with step input. The table is used for selecting the proportional gain. The effectiveness of the proposed controller is confirmed through the simulation and experiment.

  • PDF

Optimization of the Tooth Surface in the Helical Gears Using a Response Surface Method (반응표면법을 이용한 헬리컬기어 치형수정의 최적화)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.760-763
    • /
    • 2005
  • Optimum design of the tooth surface for the reduction of transmission error is very difficult to determine analytically due to nonlinearity of transmission error under the several load condition. The design of tooth surface that can give a low noise under the various load condition is very important. Therefore, this study proposes the method to determine the optimal lead curve and robust design of the tooth surface by using the response surface method. To do so, the design variables are selected by a screening experiment. Then the fitted regression model Is built with the check of the usefulness of the model. The model with constraints is solved to obtain the optimum values for the lead curve and the robust design fur the tooth surface.

  • PDF

Frequency Response Analysis of Electrostatic Microactuators (정전형 마이크로 엑츄에이터의 주파수 응답 특성 해석)

  • Min, Dong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1982-1984
    • /
    • 2002
  • The admittance of one-port electrostatic actuator are modeled using the steady-state sinusoidal response. Also the admittance of the differential type actuator is derived taking the practical conditions into consideration, although it has no admittance in ideal case. It is a function of biasing error, driving error, and capacitive mismatch including parasitic capacitors. The validity of the admittance model is proved by comparing between the modeled and measured admittances. The distortion in the frequency response curve measured by a capacitive sensor is analyzed and it is concluded that the admittance is the main cause of this distortion.

  • PDF

Modal Parameter Identification from Frequency Response Functions Using Legendre Polynomials (Legendre 다항식을 이용한 주파수 응답 함수의 곡선접합과 모드 매개변수 규명)

  • Park, Nam-Gyu;Jeon, Sang-Youn;Suh, Jeong-Min;Kim, Hyeong-Koo;Jang, Young-Ki;Kim, Kyu-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.769-776
    • /
    • 2006
  • A measured frequency response function can be represented as a ratio of two polynomials. A curve-fitting of frequency responses with Legendre polynomialis suggested in the paper. And the suggested curve-fitting algorithm is based on the least-square error method. Since the Legendre polynomials satisfy the orthogonality condition, the curve-fitting with the polynomials results to more reliable curve-fitting than ordinary polynomial method. Though the proposed curve-fitting with Legendre polynomials cannot cover all frequency range of interest, example shows that the suggested method is quite applicable in a limited frequency band.

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

Numerical response of pile foundations in granular soils subjected to lateral load

  • Adeel, Muhammad B.;Aaqib, Muhammad;Pervaiz, Usman;Rehman, Jawad Ur;Park, Duhee
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-23
    • /
    • 2022
  • The response of pile foundations under lateral loads are usually analyzed using beam-on-nonlinear-Winkler-foundation (BNWF) model framework employing various forms of empirically derived p-y curves and p-multipliers. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. The objective of this study is to evaluate the performance of the BNWF model and to quantify the error in the estimated pile response compared to a rigorous numerical model. BNWF analyses are performed using three sets of p-y curves to evaluate reliability of the procedure. The BNWF model outputs are compared with results of 3D nonlinear finite element (FE) analysis, which are validated via field load test measurements. The BNWF model using API p-y curve produces higher load-displacement curve and peak bending moment compared with the results of the FE model, because empirical p-y curve overestimates the stiffness and underestimates ultimate resistance up to a depth equivalent to four times the pile diameter. The BNWF model overestimates the peak bending moment by approximately 20-30% using both the API and Reese curves. The p-multipliers are revealed to be sensitive on the p-y curve used as input. These results highlight a need to develop updated p-y curves and p-multipliers for improved prediction of the pile response under lateral loading.

An Empirical Study of the Relationships between CO2 Emissions, Economic Growth and Openness (개방화와 경제성장에 따른 한국, 중국, 일본의 이산화탄소 배출량 비교 분석)

  • Choi, Eunho;Heshmati, Almas;Cho, Yongsung
    • Journal of Environmental Policy
    • /
    • v.10 no.4
    • /
    • pp.3-37
    • /
    • 2011
  • This paper investigates the existence of the environmental Kuznets curve (EKC) for carbon dioxide $CO_2$ emissions and its causal relationships with economic growth and openness by using time series data (1971-2006) from China (an emerging market), Korea (a newly industrialized country), and Japan (a developed country). The sample countries span a whole range of development stages from industrialized to newly industrialized and emerging market economies. The environmental consequences according to openness and economic growth do not show uniform results across the countries. Depending on the national characteristics, the estimated EKC show different temporal patterns. China shows an N-shaped curve while Japan has a U-shaped curve. Such dissimilarities are also found in the relationship between $CO_2$ emissions and openness. In the case of Korea, and Japan it represents an inverted U-shaped curve while China shows a U-shaped curve. We also analyze the dynamic relationships between the variables by adopting a vector auto regression or vector error correction model. These models through the impulse response functions allow for analysis of the causal variable's influence on the dynamic response of emission variables, and it adopts a variance decomposition to explain the magnitude of the forecast error variance determined by the shocks to each of the causal variables over time. Results show evidence of large heterogeneity among the countries and variables impacts.

  • PDF