The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.
본 논문은 다수의 비디오를 전송하는 직교 주파수 다중 분할 시스템의 다운링크에서 종단간 비디오에서 발생하는 왜곡을 최소화하는 자원 할당 방법을 제안한다. 제안된 알고리즘은 제한된 시스템 리소스에서 다수 사용자의 다양성과 패킷 왜곡 모델을 이용한 비트 왜곡 함수를 이용하여 전체 사용자의 비디오 왜곡을 최소화한다. 첫 단계에서, H.264 비디오 코딩 구조에 존재하는 에러 은닉과 전파를 이용하여 비트 왜곡 함수를 유도한다. 두 번째 단계에서는 전체적인 비디오 화질 저하를 최소화하기 위해서, 직교 주파수 다중 분할 시스템의 자원을 사용자의 다양성을 이용하여 부 반송파와 파워를 할당하는 자원 할당 알고리즘을 제안한다. 또한 각 사용자에 의해서 요구되는 비디오 화질을 얻기 위해서, 비례 율의 요소를 적용한다. 실험결과에서, 제안된 자원할당 알고리즘은 기존의 시간 분할 다중 접속 방법 그리고 비트 왜곡의 정보를 이용하지 않는 알고리즘과 비교해서, 종단간의 비디오 화질을 크게 향상시키는 결과를 보였다.
본 연구는 다층 퍼셉트론과 지도형 학습알고리즘에 대해 알아보았고, 아울러 neuralnet이라는 패키지를 사용하여 공변수들과 반응변수 간의 함수적 관계를 어떻게 모델링하는지 살펴보았다. 본 연구에서 적용된 알고리즘은 반응변수 값의 실제치와 예측치 간의 비교에 근거한 오차함수의 최소화를 위한 모수인 가중치들의 계속적인 조정을 특징으로 한다. 본 연구에서 설명하는 neuralnet 패키지는 활성화함수와 오차함수를 주어진 상황에 맞게 적절히 선택하고 나머지 매개변수들은 기본값으로 둘 수 있다. 본 연구에서 살펴본 불임 데이터에 대해 neuralnet 패키지를 활용한 결과 4개의 독립변수 중에서 age는 불임에 영향력이 거의 없음을 파악할 수 있었다. 아울러 신경망의 가중치는 -751.6부터 7.25에 이르기까지 다양한 값을 취하며, 첫 번째 은닉층의 절편은 -92.6과 7.25이며, 첫 번째 은닉뉴런으로 가는 공변수 age, parity, induced, spontaneous에 대한 가중치는 각각 3.17, -5.20, -36.82, -751.6임을 파악했다.
지능형 사물인터넷 (AIoT)의 핵심 응용 분야인 스마트시티는 안전, 보안, 의료 분야에서 위치 추적 및 위치 기반의 다양한 서비스를 제공한다. 위치 기반 서비스를 구현하기 위해서 실내 측위 시스템 (IPS)이 필요하며, WiFi, UWB, BLE 등의 무선통신 기술이 적용되고 있다. 저전력으로 데이터 송수신이 가능한 BLE는 저비용으로 센서, 비콘 등의 다양한 사물인터넷 소형 장치에 적용될 수 있어서 실내 측위를 위한 가장 적합한 무선통신 기술 중 하나이다. BLE는 RSSI(Received Signal Strength Indicator)를 이용하여 거리를 추정하는데, 다중 경로 페이딩(fading)의 영향으로 인한 신호 강도 변화로 인해서 수 미터 수준의 오차가 발생하게 된다. 본 논문에서는 근접 서비스를 제공하기 위한 BLE 실내 측위 시스템에 적용할 수 있는 경로 손실 모델을 연구하고, 자유공간 경로손실 계수의 최적화로 송·수신 장치 사이의 거리 오차를 줄일 수 있다는 것을 확인하였다.
교통사고 피해를 최소화하기 위해서는 차량과 도로 체계에 대한 공학적인 개선을 통하여 교통사고 원인을 제거해야 한다. 일반적으로 안정성과 효율성이 부족한 도로는 교통사고가 지속적으로 발생할 가능성이 크고 이를 개선하는데 막대한 사회적 비용과 시간이 소요되며, 부적절한 환경 요인으로 발생한 교통사고는 국가적으로 큰 피해를 발생시키게 된다. 따라서 본 연구는 최근 인공지능 분야 중 활발히 연구 중인 역전파 알고리즘(Back-Propagation Algorithm : BPA)을 이용하여 신호교차로를 대상으로 최적의 교통안전 평가기법을 제시하고자 하였다. 본 연구는 광주광역시내 교통혼잡과 교통사고가 빈번하게 발생하고 있는 신호교차로 지점을 대상으로, BPA를 이용하여 보다 신뢰성 높은 교통안전 평가 모형을 개발하고자 다음과 같은 일련의 방법으로 연구를 수행하였다. 첫째, 신호교차로 교통사고와 교통상충간의 순위상관분석을 실시하여 교통사고 순위와 교통상충 순위가 통계적으로 유의함을 확인하였다. 이는 교통상충이 신호교차로 교통안전 평가 변수로 사용될 수 있음에 따라 설명변수로 입력되고 교통사고가 종속변수인 선형회귀모형을 개발하는데 이용하였다. 둘째, 신호교차로의 교통량과 진입 진출 차로수 차이 등을 교통사고의 설명변수로 간주하여 다중회귀분석을 통해 교통사고 예측모형을 개발하였다. 셋째, 교통량과 도로 기하구조 요소를 모형의 설명변수로 설정하고 교통상충을 종속변수로 하여 BPA를 이용한 최적의 교통안전 평가 모형을 개발하였다. 마지막으로, 교통사고 실측값, 다중회귀모형, BPA에 의한 교통사고 예측값을 평균제곱근오차 방법으로 모형의 적합도 비교 분석을 하였다. 본 연구의 결과, BPA에 의해 도출된 교통사고 예측값과 교통사고 실측값 사이의 평균제곱오차는 3.89로 계산되어 BPA가 다중회귀 모형보다 상대적으로 교통안전 평가능력이 우수한 것으로 나타나 실제 신호교차로 교통안전도를 평가하는데 효과적으로 활용될 수 있을 것으로 판단되고 추후, 교통안전정책 수립시 실질적인 도움이 될 것으로 기대된다.
This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.
횡단류에 분사되는 액체 제트의 분무 및 연소 특성에 대한 수치적 연구를 수행하였다. 수치 계산을 위해 3차원의 분무 및 화학반응 유동 해석에 유용한 KIVA 코드를 횡단류에서의 분무 해석에 적합하도록 수정하여 사용하였다. 액주의 분열과 리거먼트 및 액적의 분열 현상을 해석하기 위하여 wave 모델과 KH-RT hybrid 모델이 사용되었다. 침투길이는 유입공기의 속도가 감소하거나 분사속도가 증가함에 따라 증가하였다. 유입공기의 속도가 증가할수록 계산결과의 오차가 크게 발생함을 알 수 있었다. 연소 특성에 대한 수치 해석으로 연소실 내부의 화염전파 형상과 국부지역에서의 온도및 공해 배출량에 대한 결과를 얻었다.
In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.
Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.
신두리해빈 인근지역은 겨울철 북서풍의 영향으로 인하여 모래언덕을 이룬 전형적인 퇴적지형이다. 그 규모가 방대하고 잘 발달되어 있어 보존가치를 인정받아 현재 천연기념물 제431호로 지정되어 있으며 지형학적 가치 보존 측면에서 꾸준한 모니터링이 필요하다. 본 연구에서는 충청남도 태안군에 위치한 신두리 해안사구의 장기간 지형변화 관측을 위해 약 36년 동안의 항공영상, 드론영상 그리고 드론기반 LiDAR 자료를 사용하여 분석하였다. 이를 위해서 원 자료로부터 생성된 Digital Elevation Model (DEM)을 사용하여 래스터 연산기반의 DEM 차분 기법을 적용하여 각 기간별 표고 및 부피의 변화량을 산정하였다. 또한 각 자료원의 고유오차를 오차전파법칙을 이용하여 확률기반의 부피의 변화량도 산정하였다. 그 결과, 1986년부터 2022년까지 관심영역 A (면적: 17,960 m2)에서는 35,119 m3의 퇴적이 발생하였으며, 관심영역 B (면적: 17,686 m2)에서는 54,954 m3의 퇴적이 발생하였음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.