• Title/Summary/Keyword: Error Modeling

Search Result 1,634, Processing Time 0.03 seconds

Tension estimation method using natural frequencies for cable equipped with two dampers

  • Aiko Furukawa;Kenki Goda;Tomohiro Takeichi
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.361-379
    • /
    • 2023
  • In cable structure maintenance, particularly for cable-stayed bridges, cable safety assessment relies on estimating cable tension. Conventionally, in Japan, cable tension is estimated from the natural frequencies of the cable using the higher-order vibration method. In recent years, dampers have been installed on cables to reduce cable vibrations. Because the higher-order vibration method is a method for damper-free cables, the damper must be removed to measure the natural frequencies of a cable without a damper. However, cables on some cable-stayed bridges have two dampers: one on the girder side and another on the tower side. Notably, removing and reinstalling the damper on the tower side are considerably more time- and labor-intensive. This paper introduces a tension estimation method for cables with two dampers, using natural frequencies. The proposed method was validated through numerical simulation and experiment. In the numerical tests, without measurement error in the natural frequencies, the maximum estimation error among 100 models was 3.3%. With measurement error of 2%, the average estimation error was within 5%, with a maximum error of 9%. The proposed method has high accuracy because the higher-order vibration method for a damper-free cable still has an estimation error of 5%. The experimental verification emphasizes the importance of accurate damper modeling, highlighting potential discrepancies between existing damper design formula and actual damper behavior. By revising the damper formula, the proposed method achieved accurate cable tension estimation, with a maximum estimation error of approximately 10%.

A Study on Mobile Robot Posture Error Reduction Using Systematic Odometry Error Correction (Systematic Odometry Error Correction을 이용한 이동로봇의 위치오차 보정)

  • Kang, Hyung-Suk;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.655-657
    • /
    • 1999
  • In this paper we will introduce an posture error reduction algorithm for Mobile Robot. We classified odometry error into two categories. and focus on systematic odometry error correction only. Because it is the primary reason for mobile robot navigation. For this procedure we used some robot specifications and modeled robot behavior. Through some experiment, we could obtain new system specs. After modeling, Robot navigation precision was improved.

  • PDF

A Controller Design of a Magnetic Levitation System (자기부상 시스템의 제어기 설계)

  • Ha, Y.W.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.62-71
    • /
    • 2000
  • A mathematical modeling for a magnetic levitation system is proposed using the Taylor series expansion of differential function for obtaining linearity. It is confirmed that this kind of linear approximation method can be used to the modeling of a magnetic levitation system. The two-degree-of-freedom optimal servo system for a constant reference signal is proposed using the LQ optimization technique. An additional state feedback is introduced at the output of the integrator to cancel the integral action for reference signal if there is no modeling error of the plant and no disturbance input to the plant. When the modeling error or the disturbance input exists, the integral effect appears. The system has a free parameter which can b used to tune the effect of the integral compensation.

  • PDF

A Consideration of Analytical Thermodynamic Modeling of Bipropellant Propulsion System

  • Chae, Jong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.243-246
    • /
    • 2008
  • This paper is to consider analytical thermodynamic modeling of bipropellant propulsion system. The objective of thermodynamic modeling is to predict thermodynamic conditions such as pressures, temperatures and densities in the pressurant tank and the propellant tank in which heat and mass transfer occur. In this paper also it shows analytic equations that calculate the evolution of ullage volume and interface areas. Since the ullage interface areas are time-varying,(the liquid propellant volume decreases as the rocket engine is firing; the change of ullage volume correspond to the change of liquid propellant volume) for a numerical convenience non-dimensionalized correlations are commonly used in most literatures with limitations; a few percentages of inherent error. The analytic equations are derived from analytic geometry, subsequently without inherent error. Those equations are important to calculate the heat transfer areas in the heat transfer equations. It presents the comparison result of both analytic equations and correlation method.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

A Study on Robustness of a Servosystem with Nonlinear Type Uncertainty (I) - A Synthesis of 2DOF Servosystem (비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(I) - 직달항을 고려한 2자유도 서보계의 구성)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.91-98
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a synthesis problems of this 32DOF servosystem with direct transfer term in the system representation. And, a method how we may obtain a gain such that desirable transient response is achieved, is proposed in the presence of the modelling error and disturbance input.

  • PDF

A Study on a Two-Degree-of-Freedom Servosystem Incorporating an Observer (관측기를 갖는 2자유도 서보계의 구성에 관한 고찰)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which integral compensation is effective only when there is modeling error for disturbance input. The present paper considers the design problem of 2DOF servosystem incorporating an observer. It is shown that if a state feedback gain and a observer gain satisfy a condition, the integral effect does not appear when modeling error or disturbance input exists. This result means that the servosystem does not behave as a 2DOF servosystem.

  • PDF

Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement

  • Shahrezaei, M.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.685-699
    • /
    • 2020
  • Polygonal finite element provides a great flexibility in mesh generation of crack propagation problems where the topology of the domain changes significantly. However, the control of the discretization error in such problems is a main concern. In this paper, a polygonal-FEM is presented in modeling of crack propagation problems via an automatic adaptive mesh refinement procedure. The adaptive mesh refinement is accomplished based on the Zienkiewicz-Zhu error estimator in conjunction with a weighted SPR technique. Adaptive mesh refinement is employed in some steps for reduction of the discretization error and not for tracking the crack. In the steps that no adaptive mesh refinement is required, local modifications are applied on the mesh to prevent poor polygonal element shapes. Finally, several numerical examples are analyzed to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm in crack propagation problems.

A Quantitative Performance Index for an Input Observer (II) - Analysis in Steady-State - (입력관측기의 정량적 성능지표 (II) -정상상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2067-2072
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor performances with respect to modeling error and sensing bias error. The effects of these ill-conditioning factors must be minimized for the robust performance in designing observers. In this paper, the steady-state performance of the closed-loop state and input observer is investigated quantitatively and is represented as the estimation error bounds. The performance indices are selected from these error bounds and are related to the robustness with respect to modeling errors and sensing bias. By considering both transient and steady-state performance, the main performance index is determined as the condition number of the eigenvector matrix based on $L_2$-norm.