• Title/Summary/Keyword: Error Modeling

Search Result 1,634, Processing Time 0.023 seconds

Well-Conditioned Observer Design via LMI (LMI를 이용한 Well-Conditioned 관측기 설계)

  • 허건수;정종철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF

A Study on the Lossless Image Compression using Context based Predictive Technique of Error Feedback (에러 피드백의 컨텍스트 기반 예측기법을 이용한 무손실 영상 압축에 관한 연구)

  • Chu, Hyung-Suk;Park, Byung-Su;An, Chong-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2251-2256
    • /
    • 2007
  • In this paper, the wavelet transform based lossless image compression algorithm is proposed. The proposed algorithm transforms the input image using 9/7 ICFB and S+P filter, and eliminates the spacious correlation of the subband coefficients, applying the context modeling predictive technique based on the multi-resolution structure and the feedback of the prediction error. The prediction context exploits the subordination and direction property of the different level subband in the vertical, horizontal, and diagonal subband coefficients. The simulation result of the high frequency images such as PEPPERS, BOAT, and AIRPLANE shows that the proposed algorithm efficiently predicts the edge area of each multi-resolution subband.

Estimated Temperature Error Compensation for Wavelength-Band Conversion of Infrared Image (적외선영상의 파장대역변환을 위한 추정온도 오차 보정)

  • Kim, Young-Choon;Ahn, Sang-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1270-1278
    • /
    • 2014
  • The modern infrared (IR) imaging systems use mainly one or more wavelength bands among short wavelength IR (SWIR), middle wavelength IR (MWIR), and long wavelength IR (LWIR) bands. In the process of IR image synthesis and modeling, IR image wavelength-band conversion which transforms arbitrary band image to other band one is required. The wavelength-band conversion procedure includes a temperature estimation process of an object surface. However, in this procedure, an approximated Planck's radiation equation causes errors in estimated temperature. In this paper, we propose an estimation temperature error attenuation method in IR image band conversion procedure. The estimated temperature is corrected with a slope information of radiance according to it. The corrected temperature is used for generation of the other band IR image. The verification of proposed method is demonstrated through the simulation.

An Application and Error Hooking running on Nested Session Management of Cloud Computing Collaboration Environment (클라우드 컴퓨팅 공동 환경의 네스티드 세션관리에서의 응용 및 오류 훅킹)

  • Ko, Eung-Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.145-150
    • /
    • 2012
  • This paper explains a performance analysis of an error detection system running on nested session management of cloud computing collaboration environment using rule-based DEVS modeling and simulation techniques. In DEVS, a system has a time base, inputs, states, outputs, and functions. This paper explains the design and implementation of the FDA(Fault Detection Agent). FDA is a system that is suitable for detecting software error for multimedia remote control based on nested session management of cloud computing collaboration environment.

New Design of Cylindrical Capacitive Sensor for On-line Precision Control of AMB Spindles (자기베어링의 실시간 정밀제어를 위한 원통형 정전용량 변위센서의 새로운 설계)

  • Jeon, Soo;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.548-553
    • /
    • 2000
  • A new design of cylindrical capacitive sensor(CCS) for the displacement measurement of precision active magnetic bearing(AMB) spindle is presented in this paper. This research is motivated by the problem that existing 4-segment CCS is still sensitive to the $3^{rd}$ harmonic component of the geometric errors of a rotor. The procedure of designing new CCS starts from the modeling and error analysis of CCS. The angular size of CCS is set up as a design parameter, and new 8-segment CCS is introduced to possess an arbitrary angular size. The optimum geometry of CCS to minimize the effect of geometric errors is determined through minimum norm approach. Experimental results with test rotors have confirmed the improvement in geometric error suppression.

  • PDF

A study on the development of the integrated error measurement and calibration system for a chip mounter (칩마운터를 위한 통합 오차 측정 및 평가 시스템 개발에 관한 연구)

  • 이동준;문준희;박희재;정상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.366-370
    • /
    • 2002
  • A kinematic ball bar measurement system can analyze the various errors of a machine tool easily and rapidly in a procedure and can measure many types of equipment such as chip mounter, PCB router, precision stage, etc. In this paper, the thermally induced errors are loused among various errors of a chip mounter because it affects the accuracy of the machine very much. Linear regression technique is adapted for the thermal error modeling. While the measurement and calibration of a chip mounter is difficult in general, this developed system is not only easy to apply for it but also improves the accuracy by 4 times or more.

  • PDF

MODELING UNCERTAINTY IN QUASI-HYDROSTATIC ISOTHERMAL SELF-GRAVITATING SLAB

  • Nejad-Asghar, Mohsen
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The smoothed particle hydrodynamics (SPH) method is applied to construct the dispersion of fluctuations in quasi-hydrostatic configuration of an isothermal self-gravitating slab. The uncertainty of the implementation is evaluated, and a novel technique (acceleration error) is proposed to weaken this uncertainty. The two-fluid quasi-hydrostatic diffusion of small fluctuations is used to support the importance of the acceleration error. The results show that the uncertainty converges to a few percent by increasing of the SPH particle numbers. Considering the acceleration error weakens the uncertainty, and prohibits the serious dynamical consequences in slow dispersion of fluctuation in the quasi-hydrostatic evolution of the slab.

Registration Error Compensation for Face Recognition Using Eigenface (Eigenface를 이용한 얼굴인식에서의 영상등록 오차 보정)

  • Moon Ji-Hye;Lee Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5C
    • /
    • pp.364-370
    • /
    • 2005
  • The first step of face recognition is to align an input face picture with database images. We propose a new algorithm of removing registration error in eigenspace. Our algorithm can correct for translation, rotation and scale changes. Linear matrix modeling of registration error enables us to compensate for subpixel errors in eigenspace. After calculating derivative of a weighting vector in eigenspace we can obtain the amount of translation or rotation without time consuming search. We verify that the correction enhances the recognition rate dramatically.

Error Compensation of Laser Interferometer for Measuring Displacement Using the Kalman Filter

  • Park, Tong-Jin;Lee, Yong-Woo;Wang, Young-Yong;Han, Chang-Soo;Lee, Nak-Ku;Lee, Hyung-Wok;Choi, Tae-Hoon;Na, Kyung-Whan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.41-46
    • /
    • 2004
  • This paper proposes a robust discrete time Kalman filter (RDKF) for the dynamic compensation of nonlinearity in a homodyne laser interferometer for high-precision displacement measurement and in real-time. The interferometer system is modeled to reduce the calculation of the estimator. A regulator is applied to improve the robustness of the system. An estimator based on dynamic modeling and a zero regulator of the system was designed by the authors of this study. For real measurement, the experimental results show that the proposed interferometer system can be applied to high precision displacement measurement in real-time.

  • PDF

Color gamut mapping using fictive 3-D CIELAB equidistance sample (가상의 3차원 CIELAB 등거리 색표본을 이용한 색역사상)

  • 오현수;곽한봉;이철희;서봉우;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.2
    • /
    • pp.58-67
    • /
    • 2001
  • Gamut mapping is a technique that acts on cross-media color reproduction to transform a color between devices for the purpose of enhancing the appearance or preserving the appearance of an image. Gamut mapping essentially produces color conversion error which depends the gamut mapping method, source and destination devices, and sample points for gamut modeling. For color space conversion between monitor colors and printer colors, empirical representation using sample measurements is currently widely utilized. Color samples are uniformly selected in the device space such as CMY or RGB, represented as color patches, and then measured. However, in the case of printer, these color samples are not evenly distributed inside the printer gamut and the color conversion error is increased. Accordingly, this paper introduces a equally distributed color sampling method in CIELAB space, a device- independent color space, to reduce color conversion error, and the performance is analyzed via color space conversion experiments using tetrahedral interpolation.

  • PDF