• 제목/요약/키워드: Error Modeling

검색결과 1,659건 처리시간 0.029초

관개 회귀수 추정을 위한 BROOK90-K의 개발과 검증 (Development and validation of BROOK90-K for estimating irrigation return flows)

  • 박종철;김만규
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.87-101
    • /
    • 2016
  • This study was conducted to develop a hydrological model of catchment water balance which is able to estimate irrigation return flows, so BROOK90-K (Kongju National University) was developed as a result of the study. BROOK90-K consists of three main modules. The first module was designed to simulate water balance for reservoir and its catchment. The second and third module was designed to simulate hydrological processes in rice paddy fields located on lower watershed and lower watershed excluding rice paddy fields. The models consider behavior of floodgate manager for estimating the storage of reservoir, and modules for water balance in lower watershed reflects agricultural factors, such as irrigation period and, complex sources of water supply, as well as irrigation methods. In this study, the models were applied on Guryangcheon stream watershed. R2, Nash-Sutcliffe efficiency (NS), NS-log1p, and root mean square error between simulated and observed discharge were 0.79, 0.79, 0.69, and 4.27 mm/d respectively in the model calibration period (2001~2003). Furthermore, the model efficiencies were 0.91, 0.91, 0.73, and 2.38 mm/d respectively over the model validation period (2004~2006). In the future, the developed BROOK90-K is expected to be utilized for various modeling studies, such as the prediction of water demand, water quality environment analysis, and the development of algorithms for effective management of reservoir.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

가변 히스테리시스 전류제어 모델링을 통한 SRM 구동특성 (SRM Driving Characteristics through Modeling of Variable Hysteresis Current Control)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.123-128
    • /
    • 2022
  • SRM(Switched Reluctance Motor)의 토크는 인덕턴스의 기울기에 비례하여 발생하기 때문에 비선형 토크 특성을 가지며 토크 맥동이 크고 소음이 심한 단점을 가지고 있다. 특히 SRM의 상용화에 가장 큰 장해 요인으로 작용하고 있는 것은 회전축에서 발생하는 맥동 토크로 이에 의해 기기자체는 물론이고 주변장치에까지 여러 가지 악영향을 미친다. 따라서 맥동 토크를 저감시키는 방법으로 다양한 방안이 국내외 연구자들에 의하여 발표되었고 히스테리시스 제어기의 경우 초핑 제어에 비해 평활한 전류를 흘려줄 수 있다는 장점이 있다는 연구결과가 있다. 그러나 히스테리시스 밴드를 결정함에 있어서 밴드가 너무 작을 경우 많은 스위칭으로 인한 스위칭 손실과 엔코더의 사용 시 불안정한 초기 기동을 야기할 수 있는 둥의 단점을 가지고 있다. 따라서 본 논문에서는 속도오차에 따른 히스테리시스 밴드의 변화를 통하여 보다 안정적이고 빠른 속도응답을 가지면서 정상상태에서 토크 리플을 줄일 수 있는 가변 히스테리시스 제어기에 대하여 연구하였다.

암호화폐 수익률 예측력 향상을 위한 요인 강화 (Factor augmentation for cryptocurrency return forecasting)

  • 염예빈;한유진;이재현;박세령;이정우;백창룡
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.189-201
    • /
    • 2022
  • 본 연구는 외부 요인을 모형에 강화시켜 암호화폐 수익률 예측력을 향상시키는 방법에 대해서 다루고 있다. 고려한 요인으로는 크게 나누어 금융 경제적 요인 및 심리적 요인을 고려하였다. 먼저 금융 경제적 요인을 반용하기 위해서 주성분 요인을 사용하여 수 많은 변수를 차원축소를 통해서 모형에 반영하였다. 또한 심리적 요인을 위해서는 뉴스 기사 데이터를 활용하여 산출해낸 감성지수를 활용하였다. 이러한 요인들은 충격반응함수 분석을 통해서 요인들의 의미와 영향력을 시각화하였다. 또한 전통적인 ARIMAX 뿐 만 아니라 랜덤포레스트 및 딥러닝 모형을 활용하여 비선형성을 반영하였다. 그 결과 요인 강화가 암호화폐 수익률 예측력을 향상시킴을 실증분석을 통해 밝혔으며 그 중에서 딥러닝 모형인 GRU가 가장 좋은 예측 성능을 보임을 관찰하였다.

Evaluation of the equation for predicting dry matter intake of lactating dairy cows in the Korean feeding standards for dairy cattle

  • Lee, Mingyung;Lee, Junsung;Jeon, Seoyoung;Park, Seong-Min;Ki, Kwang-Seok;Seo, Seongwon
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1623-1631
    • /
    • 2021
  • Objective: This study aimed to validate and evaluate the dry matter (DM) intake prediction model of the Korean feeding standards for dairy cattle (KFSD). Methods: The KFSD DM intake (DMI) model was developed using a database containing the data from the Journal of Dairy Science from 2006 to 2011 (1,065 observations 287 studies). The development (458 observations from 103 studies) and evaluation databases (168 observations from 74 studies) were constructed from the database. The body weight (kg; BW), metabolic BW (BW0.75, MBW), 4% fat-corrected milk (FCM), forage as a percentage of dietary DM, and the dietary content of nutrients (% DM) were chosen as possible explanatory variables. A random coefficient model with the study as a random variable and a linear model without the random effect was used to select model variables and estimate parameters, respectively, during the model development. The best-fit equation was compared to published equations, and sensitivity analysis of the prediction equation was conducted. The KFSD model was also evaluated using in vivo feeding trial data. Results: The KFSD DMI equation is 4.103 (±2.994)+0.112 (±0.022)×MBW+0.284 (±0.020)×FCM-0.119 (±0.028)×neutral detergent fiber (NDF), explaining 47% of the variation in the evaluation dataset with no mean nor slope bias (p>0.05). The root mean square prediction error was 2.70 kg/d, best among the tested equations. The sensitivity analysis showed that the model is the most sensitive to FCM, followed by MBW and NDF. With the in vivo data, the KFSD equation showed slightly higher precision (R2 = 0.39) than the NRC equation (R2 = 0.37), with a mean bias of 1.19 kg and no slope bias (p>0.05). Conclusion: The KFSD DMI model is suitable for predicting the DMI of lactating dairy cows in practical situations in Korea.

CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가 (Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea)

  • 이진헌;이민우;박창용;박상현;송영호;김옥;신지훈
    • 한국환경보건학회지
    • /
    • 제48권3호
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.

도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용 (Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area)

  • 김한샘;선창국;하익수
    • 한국지진공학회논문집
    • /
    • 제27권5호
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

Adding AGC Case Studies to the Educator's Tool Chest

  • Schaufelberger, John;Rybkowski, Zofia K.;Clevenger, Caroline
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1226-1236
    • /
    • 2022
  • Because students majoring in construction-related fields must develop a broad repository of knowledge and skills, effective transferal of these is the primary focus of most academic programs. While inculcation of this body of knowledge is certainly critical, actual construction projects are complicated ventures that involve levels of risk and uncertainty, such as resistant neighboring communities, unforeseen weather conditions, escalating material costs, labor shortages and strikes, accidents on jobsites, challenges with emerging forms of technology, etc. Learning how to develop a level of discernment about potential ways to handle such uncertainty often takes years of costly trial-and-error in the proverbial "school of hard knocks." There is therefore a need to proactively expedite the development of a sharpened intuition when making decisions. The AGC Education and Research Foundation case study committee was formed to address this need. Since its inception in 2011, 14 freely downloadable case studies have thus far been jointly developed by an academics and industry practitioners to help educators elicit varied responses from students about potential ways to respond when facing an actual project dilemma. AGC case studies are typically designed to focus on a particular concern and topics have thus far included: ethics, site logistics planning, financial management, prefabrication and modularization, safety, lean practices, preconstruction planning, subcontractor management, collaborative teamwork, sustainable construction, mobile technology, and building information modeling (BIM). This session will include an overview of the history and intent of the AGC case study program, as well as lively interactive demonstrations and discussions on how case studies can be used both by educators within a typical academic setting, as well as by industry practitioners seeking a novel tool for their in-house training programs.

  • PDF

Theoretical formulation for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace

  • Jouneghani, Habib Ghasemi;Fanaie, Nader;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.437-454
    • /
    • 2022
  • Elliptic-braced simple resisting frame as a new lateral bracing system installed in the middle bay of frame in building facades has been recently introduced. This system not only creates a problem for opening space from the architectural viewpoint but also improves the structural behavior. Despite the researches on the seismic performance of lateral bracing systems, there are few studies performed on the effect of the stiffness parameters on the elastic story drift and calculation of period in simple braced steel frames. To overcome this shortcoming, in this paper, for the first time, an analytical solution is presented for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace subjected to lateral load. In addition, for the first time, in this study, a precise formulation has been developed to evaluate the elastic stiffness variation in a steel frame equipped with a two-dimensional single-story single-span elliptic brace using strain energy and Castigliano's theorem. Thus, all the effective factors, including axial and shear loads as well as bending moments of elliptic brace could be considered. At the end of the analysis, the lateral stiffness can be calculated by an improved and innovative relation through the energy method based on the geometrical properties of the employed sections and specification of the used material. Also, an equivalent element of an elliptic brace was presented for the ease of modeling and use in linear designs. Application of the proposed relation have been verified through a variety of examples in OpenSees software. Based on the results, the error percentage between the elastic stiffness derived from the developed equations and the numerical analyses of finite element models was very low and negligible.

골조 수직, 수평 측정작업 시 LiDAR 및 AR 기술 적용방안 제시 (Exploring the Combined Use of LiDAR and Augmented Reality for Enhanced Vertical and Horizontal Measurements of Structural Frames)

  • 박인애;김상용
    • 한국건축시공학회지
    • /
    • 제23권3호
    • /
    • pp.273-284
    • /
    • 2023
  • 건설프로젝트 진행 시 골조공사 후 시공상태를 점검하는 업무가 필수적이며, 이에 골조의 수직 및 수평 정확도를 점검하고 결함에 대한 보수작업을 수행한다. 하지만 기존의 업무방식은 점검자의 주관적 판단 및 인적오류의 발생 가능성으로 인한 신뢰성 문제, 수작업으로 인한 인력 및 시간 소모적 문제 등이 존재한다. 이에 본 연구는 상기 문제점을 해결하고, 골조공사 시공상태 점검 및 결과공유 과정의 효율을 높이고자 LiDAR 및 AR 기술의 활용방안을 제안하였다. 본 연구에서는 LiDAR를 통해 골조의 3D Point Cloud 데이터를 취득하여 시공상태 점검에 적용하는 방안과, 점검결과 데이터를 BIM 모델에 입력 후, AR을 통해 시각화하는 방안을 제안하였다. 이는 기존 방식 대비 점검과정의 객관성, 결과공유의 신속성 및 정확도 측면에서 효율적인 방식임을 확인하였으며, 더불어 건설프로젝트 전체의 품질 및 생산성 향상에 기여할수 있을 것으로 기대된다.