• Title/Summary/Keyword: Error Identification

Search Result 770, Processing Time 0.031 seconds

Denoising PIV velocity fields and improving vortex identification using spatial filters (공간 필터를 이용한 PIV 속도장의 잡음 제거 및 와류 식별 개선)

  • Jung, Hyunkyun;Lee, Hoonsang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.48-57
    • /
    • 2019
  • A straightforward strategy for particle image velocimetry (PIV) interrogation and post-processing has been proposed, aiming at reducing errors and clarifying vortex structures. The interrogation window size should be kept small to reduce bias error and improve spatial resolution. A spatial filter is then applied to the velocity field to reduce random error and clarify flow structure. The performance of three popular spatial filters were assessed: box filter, median filter, and local quadratic polynomial regression filter. In order to quantify random uncertainty, the image matching (IM) method is applied to an experimental dataset of homogeneous and isotropic turbulence (HIT) obtained by 2D-PIV. We statistically analyze the uncertainty propagation through the spatial filters, and verify the reduction in random uncertainty. Moreover, we illustrate that the spatial filters help clarify vortex structures using vortex identification criteria. As a result, PIV random uncertainty was reduced and the vortex structures became clearer by spatial filtering.

Classification of Plants into Families based on Leaf Texture

  • TREY, Zacrada Francoise;GOORE, Bi Tra;BAGUI, K. Olivier;TIEBRE, Marie Solange
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.205-211
    • /
    • 2021
  • Plants are important for humanity. They intervene in several areas of human life: medicine, nutrition, cosmetics, decoration, etc. The large number of varieties of these plants requires an efficient solution to identify them for proper use. The ease of recognition of these plants undoubtedly depends on the classification of these species into family; however, finding the relevant characteristics to achieve better automatic classification is still a huge challenge for researchers in the field. In this paper, we have developed a new automatic plant classification technique based on artificial neural networks. Our model uses leaf texture characteristics as parameters for plant family identification. The results of our model gave a perfect classification of three plant families of the Ivorian flora, with a determination coefficient (R2) of 0.99; an error rate (RMSE) of 1.348e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and an accuracy (Accuracy) of 100%. The same technique was applied on Flavia: the international basis of plants and showed a perfect identification regression (R2) of 0.98, an error rate (RMSE) of 1.136e-14, a sensitivity of 84.85%, a specificity of 100%, a precision of 100% and a trueness (Accuracy) of 100%. These results show that our technique is efficient and can guide the botanist to establish a model for many plants to avoid identification problems.

A Realization of Injurious moving picture filtering system with Gaussian Mixture Model and Frame-level Likelihood Estimation (Gaussian Mixture Model과 프레임 단위 유사도 추정을 이용한 유해동영상 필터링 시스템 구현)

  • Kim, Min-Joung;Jeong, Jong-Hyeog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In this paper, we propose the injurious moving picture filtering system using certain sounds contained in the injurious moving picture to filter injurious moving picture which is distributed without limitation in internet and internet storage space. For this purpose, the Gaussian Mixture Model which can well represent the characteristics of the sound, is used and frame level likelihood estimation is used to calculate the likelihood between filtering target data and the sound models. Also, the pruning method which can real-time proceed by reducing the comparing number of data, is applied for real-time processing, and MWMR method which showed good performance from existing speaker identification, is applied for the distinguish performance of high precision. In the identification experiment result, in case of the frame rate which is the proportion of total frame to high likelihood frame, is set to 50%, identification error rate is 6.06%, and in case of frame rate is set to 60%, error rate is 3.03%. As the result, the proposed system can distinguish between general and injurious moving picture effectively.

Development of Moving Force Identification Algorithm Using Moment Influence Lines at Multiple-Axes and Density Estimation Function (다축모멘트 영향선과 밀도추정함수를 사용한 이동하중식별 알고리듬의 개발)

  • Jeong, Ji-Weon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.87-94
    • /
    • 2006
  • Estimating moving vehicle loads is important in modeling design loads for bridge design and construction. The paper proposes a moving force identification algorithm using moment influence lines measured at multi-axes. Density estimation function was applied to estimate more than two wheel loads when estimated load values fluctuated severely. The algorithm has been examined through simulation studies on a simple-span plate-girder bridge. Influences of measurement noise and error in velocity on the identification results were investigated in the simulation study. Also, laboratory experiments were carried out to examine the algorithm. The load identification capability was dependent on the type and speed of moving loads, but the developed algorithm could identify loads within 10% error in maximum.

Human Errors and Human Factors in Service Delivery Processes: A Literature Review and Future Works (서비스 분야에서 인간공학과 인적오류 연구)

  • Hong, Seung-Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.169-177
    • /
    • 2011
  • The aim of this study is to review previous studies on human errors in the service delivery processes. Service industry is sharply growing in the advanced countries. Many people are looking for something to contribute to the service industry. Although there are many research topics related to service domain that human factors and ergonomics specialists can do contribute, a few researchers are studying such topics. This paper indicated how previous researches on human factors and human errors have addressed the service domain, in order to prompt human factor study on the service domain. A variety of sources were inspected for literature reviews, including books and journals of managements, medicine, psychology, consumer behavior as well as human factor and ergonomics. The characteristics of human errors in the service domain were investigated. Human error studies in several service sectors were summarized such as medical service, automotive service operation, travel agent service and call center service. Until now, human factors community was not much interested in human errors in service domain. However, there is much space to contribute to service domain; human error identification, human error analysis and control of human error. The research of human error in service domain can provide clues to improve service quality. This paper helps to guide to identify human error of service domain and to design service systems.

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Experimental identification of multiple faults in rotating machines

  • Mahfoud, Jarir;Breneur, Claire
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.429-438
    • /
    • 2008
  • The aim of this paper is to define the required measurements and processing tools necessary for developing a maintenance approach applied to rotating machines in the presence of multiple faults. The system responses measured were accelerations and transmission errors. Acceleration measurements provide most of the information on bearing conditions, while transmission error measurements provide pertinent information on gear conditions. The measurements were carried out for several operating conditions (loads and speeds). System responses were processed in several analyzing domains (Time, Spectrum, and Cepstrum domains). The approach developed enables the detection and identification of combined faults and it can be applied to other types of rotating machines once the critical elements and their associated faults have been defined.

Strategic Identification of Unsafe Actions That Characterize Accidents on Ships

  • Rivai, Haryanti;Furusho, Masao
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.499-509
    • /
    • 2013
  • Seafarers are one of the main engines driving economic growth in the maritime sector. The International Maritime (IMO) Organization estimated that there were approximately 1.5 million seafarers around the world engaged in international trade in 2012. Data have shown that human casualties in maritime accidents around Japan have shown an increasing trend over the last ten years. One cause is human error, which is inseparable from the human element that influences mariner's decisions and actions. The Personal Identification (PIN) Safe method is one way to systematically identify substandard and unsafe actions by considering the error taxonomies associated with various scenarios for a maritime system. The results are based on analysis of the role of the human element in commonly reported unsafe actions when interacting with equipment and other systems. Furthermore, patterns of influencing shaping factors were observed on the basis of data processing; the aim of this study was to promote safety culture and provide an opportunity to improve safety at sea.

Nonlinear Parameter Estimation of Suspension System (현가장치의 비선형 설계변수 추정)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The suspension system of cars is composed of dampers and springs, which usually have nonlinear characteristics. The nonlinear characteristics make the differences in the results of analytical models and experiments. In this study, the nonlinear system identification method which does not assume a special form for nonlinear dynamic systems and minimize the error by calculating the error reduction ratio is devised to estimate the nonlinear parameters of the suspension system of an EF-SONATA car from the field running test data. The results show that the spring has a cubic nonlinear term and the damper has a coupled nonlinear term. Also, the numerical results with the estimated nonlinear parameters agree well with the field test data for the different running speeds.

Interacting Multiple Model Baro-Error Identification Filter (IMM 기법을 이용한 기압고도계 오차 식별 필터)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.290-291
    • /
    • 2007
  • Barometers can provide height information steady but its accuracy becomes poor as the air data varies due to the vehicles's moving or time's elapsing. In order to keep the accuracy in spite of the air data changes, we propose a filter for the identification of baro-errors. The baro-errors mainly consist of bias and scale factor errors which gradually varies as the air data varies. With GPS height measurements, the scale factor and bias estimator is designed by applying the interacting multiple model (IMM) filtering technique to the baro-error random walk model. The resultant estimates are used to compensate current baro-measurement to supply accurate measurements steadily.

  • PDF