• Title/Summary/Keyword: Error Forecasting

Search Result 536, Processing Time 0.026 seconds

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

Long-term forecasting reference evapotranspiration using statistically predicted temperature information (통계적 기온예측정보를 활용한 기준증발산량 장기예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1243-1254
    • /
    • 2021
  • For water resources operation or agricultural water management, it is important to accurately predict evapotranspiration for a long-term future over a seasonal or monthly basis. In this study, reference evapotranspiration forecast (up to 12 months in advance) was performed using statistically predicted monthly temperatures and temperature-based Hamon method for the Han River basin. First, the daily maximum and minimum temperature data for 15 meterological stations in the basin were derived by spatial-temporal downscaling the monthly temperature forecasts. The results of goodness-of-fit test for the downscaled temperature data at each site showed that the percent bias (PBIAS) ranged from 1.3 to 6.9%, the ratio of the root mean square error to the standard deviation of the observations (RSR) ranged from 0.22 to 0.27, the Nash-Sutcliffe efficiency (NSE) ranged from 0.93 to 0.95, and the Pearson correlation coefficient (r) ranged from 0.97 to 0.98 for the monthly average daily maximum temperature. And for the monthly average daily minimum temperature, PBIAS was 7.8 to 44.7%, RSR was 0.21 to 0.25, NSE was 0.94 to 0.96, and r was 0.98 to 0.99. The difference by site was not large, and the downscaled results were similar to the observations. In the results of comparing the forecasted reference evapotranspiration calculated using the downscaled data with the observed values for the entire region, PBIAS was 2.2 to 5.4%, RSR was 0.21 to 0.28, NSE was 0.92 to 0.96, and r was 0.96 to 0.98, indicating a very high fit. Due to the characteristics of the statistical models and uncertainty in the downscaling process, the predicted reference evapotranspiration may slightly deviate from the observed value in some periods when temperatures completely different from the past are observed. However, considering that it is a forecast result for the future period, it will be sufficiently useful as information for the evaluation or operation of water resources in the future.

Rice Yield Estimation of South Korea from Year 2003-2016 Using Stacked Sparse AutoEncoder (SSAE 알고리즘을 통한 2003-2016년 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Lee, Kyungdo;Choi, Ki-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.631-640
    • /
    • 2017
  • The estimation of rice yield affects the income of farmers as well as the fields related to agriculture. Moreover, it has an important effect on the government's policy making including the control of supply demand and the price estimation. Thus, it is necessary to build the crop yield estimation model and from the past, many studies utilizing empirical statistical models or artificial neural network algorithms have been conducted through climatic and satellite data. Presently, scientists have achieved successful results with deep learning algorithms in the field of pattern recognition, computer vision, speech recognition, etc. Among deep learning algorithms, the SSAE (Stacked Sparse AutoEncoder) algorithm has been confirmed to be applicable in the field of forecasting through time series data and in this study, SSAE was utilized to estimate the rice yield in South Korea. The climatic and satellite data were used as the input variables and different types of input data were constructed according to the period of rice growth in South Korea. As a result, the combination of the satellite data from May to September and the climatic data using the 16 day average value showed the best performance with showing average annual %RMSE (percent Root Mean Square Error) and region %RMSE of 7.43% and 7.16% that the applicability of the SSAE algorithm could be proved in the field of rice yield estimation.

Improvement of Non-linear Estimation Equation of Rainfall Intensity over the Korean Peninsula by using the Brightness Temperature of Satellite and Radar Reflectivity Data (기상위성 휘도온도와 기상레이더 반사도 자료를 이용한 한반도 영역의 강우강도 추정 비선형 관계식 개선)

  • Choi, Haklim;Seo, Jong-Jin;Bae, Juyeon;Kim, Sujin;Lee, Kwang-Mog
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.131-138
    • /
    • 2018
  • The purpose of this study is to improve the quantitative precipitation estimation method based on satellite brightness temperature. The non-linear equation for rainfall estimation is improved by analysing precipitation cases around the Korean peninsula in summer. Radar reflectivity is adopted the CAPPI 1.5 and CMAX composite fields that provided by the Korea Meteorological Agency (KMA). In addition, the satellite data are used infrared, water vapor and visible channel measured from meteorological imager sensor mounted on the Chollian satellite. The improved algorithm is compared with the results of the A-E method and CRR analytic function. POD, FAR and CSI are 0.67, 0.76 and 0.21, respectively. The MAE and RMSE are 2.49 and 6.18 mm/h. As the quantitative error was reduced in comparison to A-E and qualitative accuracy increased in compare with CRR, the disadvantage of both algorithms are complemented. The method of estimating precipitation through a relational expression can be used for short-term forecasting because of allowing precipitation estimation in a short time without going through complicated algorithms.

Analysis of Global Shipping Market Status and Forecasting the Container Freight Volume of Busan New port using Time-series Model (글로벌 해운시장 현황 분석 및 시계열 모형을 이용한 부산 신항 컨테이너 물동량 예측에 관한 연구)

  • JO, Jun-Ho;Byon, Je-Seop;Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2017
  • In this paper, we analyze the trends of the international shipping market and the domestic and foreign factors of the crisis of the domestic shipping market, and identify the characteristics of the recovery of the Busan New Port trade volume which has decreased since the crisis of the domestic shipping market We quantitatively analyzed the future volume of Busan New Port and analyzed the trends of the prediction and recovery trends. As a result of analyzing Busan New Port container cargo volume by using big data analysis tool R, the variation of Busan New Cargo container cargo volume was estimated by ARIMA model (1,0,1) (1,0,1)[12] Estimation error, AICc and BIC were the most optimal ARIMA models. Therefore, we estimated the estimated value of Busan New Port trade for 36 months by using ARIMA (1, 0, 1)[12], which is the optimal model of Busan New Port trade, and estimated 13,157,184 TEU, 13,418,123 TEU, 13,539,884 TEU, and 4,526,406 TEU, respectively, indicating that it increased by about 2%, 2%, and 1%.

A Numerical Simulation Study of Strong Wind Events at Jangbogo Station, Antarctica (남극 장보고기지 주변 강풍사례 모의 연구)

  • Kwon, Hataek;Kim, Shin-Woo;Lee, Solji;Park, Sang-Jong;Choi, Taejin;Jeong, Jee-Hoon;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.617-633
    • /
    • 2016
  • Jangbogo station is located in Terra Nova Bay over the East Antarctica, which is often affected by individual storms moving along nearby storm tracks and a katabatic flow from the continental interior towards the coast. A numerical simulation for two strong wind events of maximum instantaneous wind speed ($41.17m\;s^{-1}$) and daily mean wind speed ($23.92m\;s^{-1}$) at Jangbogo station are conducted using the polar-optimized version of Weather Research and Forecasting model (Polar WRF). Verifying model results from 3 km grid resolution simulation against AWS observation at Jangbogo station, the case of maximum instantaneous wind speed is relatively simulated well with high skill in wind with a bias of $-3.3m\;s^{-1}$ and standard deviation of $5.4m\;s^{-1}$. The case of maximum daily mean wind speed showed comparatively lower accuracy for the simulation of wind speed with a bias of -7.0 m/s and standard deviation of $8.6m\;s^{-1}$. From the analysis, it is revealed that the each case has different origins for strong wind. The highest maximum instantaneous wind case is caused by the approach of the strong synoptic low pressure system moving toward Terra Nova Bay from North and the other daily wind maximum speed case is mainly caused by the katabatic flow from the interiors of Terra Nova Bay towards the coast. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation and investigation of high wind events at Jangbogo station. However, additional efforts in utilizing the high resolution terrain is required to reduce the simulation error of high wind mainly caused by katabatic flow, which is received a lot of influence of the surrounding terrain.

Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market (냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.312-321
    • /
    • 2018
  • The Korean DR market proposes suppression of peak demand under reliability crisis caused a natural disaster or unexpected power plant accidents as well as saving power plant construction costs and expanding amount of reserve as utility's perspective. End-user is notified a DR event signal DR execution before one hour, and executes DR based on requested amount of load reduction. This paper proposes a DR energy management algorithm that can be scheduled the optimal operations of chiller system and ESS in the next day considering the TOU tariff and DR scheme. In this DR algorithm is divided into two scheduling's; day-ahead operation scheduling with temperature forecasting error and operation rescheduling on DR operation. In day-ahead operation scheduling, the operations of DR resources are scheduled based on the finite number of ambient temperature scenarios, which have been generated based on the historical ambient temperature data. As well as, the uncertainties in DR event including requested amount of load reduction and specified DR duration are also considered as scenarios. Also, operation rescheduling on DR operation day is proposed to ensure thermal comfort and the benefit of a COB owner. The proposed method minimizes the expected energy cost by a mixed integer linear programming (MILP).

Development of a Freeway Travel Time Estimating and Forecasting Model using Traffic Volume (차량검지기 교통량 데이터를 이용한 고속도로 통행시간 추정 및 예측모형 개발에 관한 연구)

  • 오세창;김명하;백용현
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.83-95
    • /
    • 2003
  • This study aims to develop travel time estimation and prediction models on the freeway using measurements from vehicle detectors. In this study, we established a travel time estimation model using traffic volume which is a principle factor of traffic flow changes by reviewing existing travel time estimation techniques. As a result of goodness of fit test. in the normal traffic condition over 70km/h, RMSEP(Root Mean Square Error Proportion) from travel speed is lower than the proposed model, but the proposed model produce more reliable travel times than the other one in the congestion. Therefore in cases of congestion the model uses the method of calculating the delay time from excess link volumes from the in- and outflow and the vehicle speeds from detectors in the traffic situation at a speed of over 70km/h. We also conducted short term prediction of Kalman Filtering to forecast traffic condition and more accurate travel times using statistical model The results of evaluation showed that the lag time occurred between predicted travel time and estimated travel time but the RMSEP values of predicted travel time to observations are as 1ow as that of estimation.

The Utilization Probability Model of Expressway Service Area based on Individual Travel Behaviors Using Vehicle Trajectory Data (차량궤적자료를 활용한 통행행태 기반 고속도로 휴게소 이용 확률 모형 개발)

  • Bang, DaeHwan;Lee, YoungIhn;Chang, HyunHo;Han, DongHee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.63-75
    • /
    • 2018
  • A Service Area plays an important role in preventing accidents in advance by creating a space for long distance drivers or drowsy drivers to rest. Therefore, proper positioning of the expressway service area is essential, and it is important to analyze accurate demand forecasting and user travel behavior. Thus, this study analysis travel behavior and developed odel of the probability of using the service area by using the DSRC data collected by the RSE on the highway. According to the analysis, the usage behavior of highway service areas was most frequently when travel time was 90 minutes or more on weekdays and 70 minutes or more on weekends. The utilization rate of the service area estimated from the probability model of use of the rest area in this study was 1 % to 2 % error. The results of this study are meaningful in analyzing the behavior of the use of rest areas using the structured data and can be used as a differentiated strategy for selecting the location of rest areas and enhancing the service level of users.