• 제목/요약/키워드: Error Forecasting

검색결과 536건 처리시간 0.025초

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • 제4권
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

인공신경망 이론을 이용한 실시간 홍수량 예측 및 해석 (Real Time Flood Forecasting Using Artificial Neural Networks)

  • 강문성;박승우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.277-280
    • /
    • 2002
  • An artificial neural network model was developed to analyze and forecast real time river runoff from the Naju watershed, in Korea. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$ is great than 0.99) for calibration data sets. Increasing the time horizon for validation data sets, thus making the model suitable for flood forecasting, decreases the accuracy of the model. The resulting optimal EBPN models for forecasting real time runoff consists of ten rainfall and four and ten runoff data (ANN0410 and ANN1010 models). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$ is great than 0.92).

  • PDF

최적화기법에 의한 관개저수지의 실시간 홍수예측모형 (Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method)

  • 문종필;김태철
    • 한국농공학회지
    • /
    • 제43권2호
    • /
    • pp.85-93
    • /
    • 2001
  • The basic concept of the model is to minimize the error range between forecasted flood inflow and actual flood inflow, and forecast accurately the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting) model. The flood forecasting model developed was applied to several strom event of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

단기부하예측을 위한 Tskagi-Sugeno 퍼지 모델 기반 예측기 설계 (Developing Takagi-Sugeno Fuzzy Model-Based Estimator for Short-Term Load Forecasting)

  • 김도완;박진배;장권규;정근호;주영훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.523-527
    • /
    • 2004
  • This paper presents a new design methods of the short-term load forecasting system (STLFS) using the data mining. The proposed predictor takes form of the convex combination of the linear time series predictors for each inputs. The problem of estimating the consequent parameters is formulated by the convex optimization problem, which is to minimize the norm distance between the real load and the output of the linear time series estimator, The problem of estimating the premise parameters is to find the parameter value minimizing the error between the real load and the overall output. Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

연간수요예측시스템의 개발 (Development of An Yearly Load Forecasting System)

  • 추진부;이철휴;전동훈;김성학;황갑주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.908-912
    • /
    • 1996
  • The yearly load forecasting system has been developed for the economic and secure operation of electric power system. It forecasts yearly peak load and thereafter deduces hourly load using the top-down approach. Relative coefficient model has been applied to estimate peak load of a specific date or a specific day of the week. It is equipped with graphic user interface which enables a user to easily access to the system. Yearly average forecasting error may be reduced to $2{\sim}3$(%) only if we can forecast summer-time temperature correctly.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.

Forecasting of Daily Inflows Based on Regressive Neural Networks

  • Shin, Hyun-Suk;Kim, Tae-Woong;Kim, Joong-Hoon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.45-51
    • /
    • 2001
  • The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.

  • PDF

An Adaption of Pattern Sequence-based Electricity Load Forecasting with Match Filtering

  • Chu, Fazheng;Jung, Sung-Hwan
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.800-807
    • /
    • 2017
  • The Pattern Sequence-based Forecasting (PSF) is an approach to forecast the behavior of time series based on similar pattern sequences. The innovation of PSF method is to convert the load time series into a label sequence by clustering technique in order to lighten computational burden. However, it brings about a new problem in determining the number of clusters and it is subject to insufficient similar days occasionally. In this paper we proposed an adaption of the PSF method, which introduces a new clustering index to determine the number of clusters and imposes a threshold to solve the problem caused by insufficient similar days. Our experiments showed that the proposed method reduced the mean absolute percentage error (MAPE) about 15%, compared to the PSF method.

신경회로망과 회귀모형을 이용한 특수일 부하 처리 기법 (Special-Days Load Handling Method using Neural Networks and Regression Models)

  • 고희석;이세훈;이충식
    • 조명전기설비학회논문지
    • /
    • 제16권2호
    • /
    • pp.98-103
    • /
    • 2002
  • 전력수요를 예측할 경우 가장 중요한 문제 중의 하나가 특수일 부하의 처리문제이다. 따라서 본 연구에서 길고(구정, 추석) 짧은(식목일, 현충일 등) 특수일 피크 부하를 신경회로망과 회귀모형을 이용하여 예측하는 방법을 제시한다. 신경회로망 모형의 특수일 부하 처리는 패턴 변환비를 이용하며, 4차의 직교 다항 회귀모형은 과거의 10년 (1985∼1994)간의 특수일 피크부하 자료를 이용하여 길고 짧은 특수일 부하를 예측한다. 특수일 피크 부하를 예측한 결과, 신경회로망 모형의 주간 평균 예측 오차율과 직교 다항 회귀모형의 예측 오차율을 분석한 결과 1∼2[%]대로 두 모형 모두 양호한 결과를 얻었다. 또한 4차의 직교 다항 회귀 모형의 수정결정계수 및 F 검정을 분석한 결과 구성한 예측 모형의 타당성을 확인하였다. 두 모형의 특수일 부하를 예측한 결과를 비교해 보면 긴 특수일 부하를 예측할 때는 패턴 변환비를 이용한 신경회로망 모형이 보다 더 효과적이었고, 짧은 특수일 부하를 예측할 경우에는 두 방법 모두 유효하였다.

통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구 (Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models)

  • Park, Dong-Joo
    • 대한교통학회지
    • /
    • 제18권3호
    • /
    • pp.55-76
    • /
    • 2000
  • 실시간 통행시간관련자료의 집계시간간격은 보다 신뢰성있는 통행시간정보제공과 교통정보센터의 효율적인 운영을 위해 매우 중요한 요소이다. 그러나 대부분의 기존 VDS 및 TCS교통정보 데이터는 통계학적·공학적 차원에서의 합리적인 연구나 검증없이 경험적 간격으로 집계되고 있다. 본 연구의 목적은 링크 및 교통축(Corridor) 통행시간 산정 및 예측시의 최적 집계 시간간격을 결정할 수 있는 통계학적 모형을 개발하고 실제 도로망에서 수집되는 통행시간자료에 적용하는 것이다 첫째로, 본 연구는 링크 및 교통축 통행시간 산정 및 예측으로 인한 오차를 계량화하는 통계학적 모형을 제시하고, 제시된 모형의 의미를 교통류이론 측면과 통행시간정보 이용자측면에서 살펴보았다. 둘째로, 미국 Texas, Houston의 도시고속도로에서 AVI시스템을 통해 수집된 통행시간자료를 제시된 모형에 적용하였다. 적용결과 링크통행시간 산정을 위한 최적 집계시간간격보다 링크통행시간예측을 위한 최적 집계시간간격이 큰 것으로 나타났으며, 교통축 통행시간 산정 및 예측을 위한 최적 집계시간간격은 교통축을 구성하는 링크간의 상관관계 (Correlation)에 큰 영향을 받는 것으로 분석되었다.

  • PDF