• 제목/요약/키워드: Error Forecasting

검색결과 536건 처리시간 0.024초

최적화기법을 이용한 관개저수지의 실시간 홍수예측모형(수공) (Real-time Flood Forecasting Model for Irrigation Reservoir Using Simplex Method)

  • 문종필;김태철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.390-396
    • /
    • 2000
  • The basic concept of the model is minimizing the error range between forecasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time(Tc) and soil moisture retention storage(Sa). Simplex method that is a multi-level optimization technique was used to search for the determination of the best parameters of RETFLO (REal-Time FLOod forecasting)model. The flood forecasting model developed was applied to several strom events of Yedang reservoir during past 10 years. Model perfomance was very good with relative errors of 10% for comparison of total runoff volume and with one hour delayed peak time.

  • PDF

관개저수지의 홍수유입량 예측 (Forecasting the Flood Inflow into Irrigation Reservoir)

  • 문종필;엄민용;박철동;김태얼
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.512-518
    • /
    • 1999
  • Recently rainfall and water evel are monitored via on -line system in real-time bases. We applied the on-line system to get the rainfall and waterlevel data for the development of the real-time flood forecasting model based on SCS method in hourly bases. Main parameters for the model calibration are concentration time of flood and soil moisture condition in the watershed. Other parameters of the model are based on SCS TR-%% and DAWAST model. Simplex method is used for promoting the accuracy of parameter estimation. The basic concept of the model is minimizing the error range between forcasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time. The flood forecasting model developed was applied to the Yedang and Topjung reservoir.

  • PDF

인공신경망 이론을 이용한 충주호의 수질예측 (Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm)

  • 정효준;이소진;이홍근
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

LSTM (Long-short Term Memory)과 GRU (Gated Recurrent Units) 모델을 활용한 양식산 넙치 도매가격 예측 연구 (Forecasting the Wholesale Price of Farmed Olive Flounder Paralichthys olivaceus Using LSTM and GRU Models)

  • 이가현;김도훈
    • 한국수산과학회지
    • /
    • 제56권2호
    • /
    • pp.243-252
    • /
    • 2023
  • Fluctuations in the price of aquaculture products have recently intensified. In particular, wholesale price fluctuations are adversely affecting consumers. Therefore, there is an emerging need for a study on forecasting the wholesale price of aquaculture products. The present study forecasted the wholesale price of olive flounder Paralichthys olivaceus, a representative farmed fish species in Korea, by constructing multivariate long-short term memory (LSTM) and gated recurrent unit (GRU) models. These deep learning models have recently been proven to be effective for forecasting in various fields. A total of 191 monthly data obtained for 17 variables were used to train and test the models. The results showed that the mean average percent error of LSTM and GRU models were 2.19% and 2.68%, respectively.

수요감소 요인 외생변수를 갖는 SARIMAX 모형을 이용한 관광수요 예측 (Forecasting Foreign Visitors using SARIMAX Models with the Exogenous Variable of Demand Decrease)

  • 이근철;최성훈
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).

Supremacy of Realized Variance MIDAS Regression in Volatility Forecasting of Mutual Funds: Empirical Evidence From Malaysia

  • WAN, Cheong Kin;CHOO, Wei Chong;HO, Jen Sim;ZHANG, Yuruixian
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권7호
    • /
    • pp.1-15
    • /
    • 2022
  • Combining the strength of both Mixed Data Sampling (MIDAS) Regression and realized variance measures, this paper seeks to investigate two objectives: (1) evaluate the post-sample performance of the proposed weekly Realized Variance-MIDAS (RVar-MIDAS) in one-week ahead volatility forecasting against the established Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the less explored but robust STES (Smooth Transition Exponential Smoothing) methods. (2) comparing forecast error performance between realized variance and squared residuals measures as a proxy for actual volatility. Data of seven private equity mutual fund indices (generated from 57 individual funds) from two different time periods (with and without financial crisis) are applied to 21 models. Robustness of the post-sample volatility forecasting of all models is validated by the Model Confidence Set (MCS) Procedures and revealed: (1) The weekly RVar-MIDAS model emerged as the best model, outperformed the robust DAILY-STES methods, and the weekly DAILY-GARCH models, particularly during a volatile period. (2) models with realized variance measured in estimation and as a proxy for actual volatility outperformed those using squared residual. This study contributes an empirical approach to one-week ahead volatility forecasting of mutual funds return, which is less explored in past literature on financial volatility forecasting compared to stocks volatility.

인공지능 기반 전력량예측 기법의 비교 (Comparison of Power Consumption Prediction Scheme Based on Artificial Intelligence)

  • 이동구;선영규;김수현;심이삭;황유민;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-167
    • /
    • 2019
  • 최근 안정적인 전력수급과 급증하는 전력수요를 예측하는 수요예측 기술에 대한 관심과 실시간 전력측정을 가능하게 하는 스마트 미터기의 보급의 증대로 인해 수요예측 기법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 실제 측정된 가정의 전력 사용량 데이터를 학습하여 예측결과를 출력하는 딥 러닝 예측모델 실험을 진행한다. 그리고 본 연구에서는 데이터 전처리 기법으로써 이동평균법을 도입하였다. 실제로 측정된 데이터를 학습한 모델의 예측량과 실제 전력 측정량을 비교한다. 이 예측량을 통해서 전력공급 예비율을 낮춰 사용되지 않고 낭비되는 예비전력을 줄일 수 있는 가능성을 제시한다. 또한 본 논문에서는 같은 데이터, 같은 실험 파라미터를 토대로 세 종류의 기법: 다층퍼셉트론(Multi Layer Perceptron, MLP), 순환신경망(Recurrent Neural Network, RNN), Long Short Term Memory(LSTM)에 대해 실험을 진행하여 성능을 평가한다. 성능평가는 MSE(Mean Squared Error), MAE(Mean Absolute Error)의 기준으로 성능평가를 진행했다.

실시간 수위 예측을 위한 다중선형회귀 모형의 비교 (Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting)

  • 최승용;한건연;김병현
    • 대한토목학회논문집
    • /
    • 제32권1B호
    • /
    • pp.9-20
    • /
    • 2012
  • 최근 수위 예측을 위한 개념적 기반, 수문학적, 물리적 기반 모형 등의 단점을 극복하고자 홍수예측을 위해 자료지향형 모형 중의 하나인 다중선형회귀 모형이 널리 도입되고 있다. 본 연구의 목적은 이러한 다중선형회귀 모형의 서로 다른 회귀계수 선정 방법에 따른 홍수예측 성능을 비교 검토하고 이를 통해 적절한 다중회귀 홍수예측 모형을 구축하는 것이다. 이를 위해 입력자료의 자기상관분석을 통해 독립변수의 시간 규모를 결정한 후 최소 자승법, 가중 최소 자승법, 단계별 선택법의 각기 다른 회귀계수 산정 방법을 이용한 홍수예측 모형을 구축하고 중랑천 유역의 다양한 홍수사상에 대해 적용하였다. 구축된 모형들의 성능을 평가하기 위해 평균제곱근오차, Nash-Suttcliffe 효율계수, 평균절대오차, 수정 결정계수와 같이 4개의 통계지표들을 사용하였다. 모의결과 단계별 선택법을 이용한 다중선형회귀 홍수예측 모형이 가장 정확한 예측 결과를 보였고, 최소자승법을 이용한 홍수예측 모형이 가중 최소자승법을 이용한 홍수예측 모형보다 좀 더 나은 예측 결과를 나타냈다.

이중편파 레이더의 홍수예보 활용성 평가 (Assessment of Dual-Polarization Radar for Flood Forecasting)

  • 김정배;최우석;배덕효
    • 한국수자원학회논문집
    • /
    • 제48권4호
    • /
    • pp.257-268
    • /
    • 2015
  • 본 연구에서는 이중편파 레이더 추정강우의 홍수예보 활용성을 평가하였다. 비슬산 강우레이더 100 km 반경 내 AWS (Automatic Weather System) 123개 관측소를 대상으로 레이더 추정강우의 오차를 레이더 반경 및 강우강도의 증가에 따라 평가하였다. 이중편파 레이더 추정강우가 단일편파 레이더 추정강우에 비해 오차가 작은 것으로 확인되었다. 또한, 이중편파 레이더 추정강우의 홍수예보 활용성 평가 및 적용을 위해 유역평균강우량을 산정하여 평가하였다. 평가 결과, 이중편파 레이더 추정강우가 단일편파 레이더 추정강우에 비해 관측치에 유사하게 나타났으며, 강우형태에 관계없이 강우 강도가 강한 부분에서 이중편파 레이더의 정확도가 향상됨을 보였다. 그러나 차등반사도를 통해 산정된 강우는 과대추정되는 경향이 나타났다. 연속형 저류함수모형인 SURR 모형에 적용하여 남강댐 유역에 대한 유출해석을 수행하였다. 이중편파 레이더 추정강우를 통한 유출량이 단일편파 레이더 추정강우에 비해 유출용적오차는 약 12~63%, 첨두유량오차는 약 30~42% 감소하였으며, 평균제곱근오차 또한 감소하는 것으로 나타났다. 또한 이중편파 레이더에 의해 산정된 유역평균강우량을 유출모형에 적용할 경우 AWS 강우로부터 추정된 유출결과보다 더 우수한 경우가 있어 향후 홍수예보 활용 시 예보의 정확도 향상에 기여하리라 판단된다.

기업실적에 대한 재무분석가의 예측활동에 관한 실증연구 (An Empirical Study of Financial Analyst's Forecasting Activities on the Firm's Operating Performances)

  • 곽재석
    • 재무관리연구
    • /
    • 제20권1호
    • /
    • pp.93-124
    • /
    • 2003
  • 본 연구에서는 2000년부터 2002년까지의 기간에서 국내 외의 재무분석가들이 1999년$\sim$2003년까지의 각 연도별 연간 매출액, 영업이익과 순이익에 대하여 발표한 예측치를 대상으로 하여 재무분석가들이 기업실적을 얼마나 정확하게 예측하며, 예측치를 수정할 때 어떤 체계적인 경향을 보이며, 기업실적을 예측할 때 전년도의 실적변화에 대해 어떤 반응을 보이는지를 분석하는데 목적을 두었다. 이러한 분석목적을 달성하기 위하여 재무분석가별, 예측년도별, 전년도의 기업실적 변화별로 표본을 각각 분류하여 재무분석가별 예측의 정확성, 합의예측치의 상대적 정확성, 예측치의 수정패턴 및 예상 밖의 전년도 실적변화에 대한 반응을 분석하였다. 본 연구에서 발견된 분석결과를 요약하면 다음과 같다. 첫째, 매출액, 영업이익과 순이익의 표준예측오차가 모두 통계적으로 유의적인 음(-)의 값을 보임으로써 재무분석가들이 기업실적을 상향 편의적으로 예측하는 경향이 있음을 발견하였다. 둘째, 국내. 외 재무분석가의 예측정확성을 비교한 분석에서 국내 재무분석가들이 국외 재무분석가들에 비해 상대적으로 정확한 예측을 하고 있음을 발견하였다. 셋째, 예측시점별로 측정한 평균표준예측오차에 대한 분석에서는 예측시점이 기업실적의 발표시점에 가까워질수록 예측의 정확성이 높아짐을 발견하였다. 넷째, 개별재무분석가와 비교할 때, 합의예측치의 정확성이 상대적으로 떨어지는 것으로 나타났으며, 합의 예측치를 추정할 때 평균보다 중위값을 이용하여 추정한 경우 예측오차를 줄일 수 있는 것으로 나타났다. 다섯째, 재무분석가들이 기업실적을 과대 예측한 다음 예측치를 하향 수정하는 것으로 나타났으나 체계적이지 않음을 발견할 수 있었다. 즉 재무분석가들은 전년도의 기업실적에 따라 예측치를 상향 또는 하향 수정하는 것으로 나타났다. 여섯째, 재무분석가들은 예측활동을 수행하는 과정에서 전년도의 매출액 변화에 대하여 과대 반응하는 한편 전년도의 영업이익과 순이익 변화에 대하여 과소 반응함을 발견할 수 있었다. 일곱째, 재무분석가들의 예측편의를 보다 정확하게 분석하기 위하여 정보변수인 전년기업실적 변수를 예상된 실적변화와 예상치 못한 실적변화로 분류하여 Easterwood-Nutt(1999)모형을 이용해 분석한 결과 세 개의 기업실적변수(매출액, 영업이익과 순이익)모두의 예상치 못한 전년실적변화에 대해 재무분석가들이 과대 예측하는 것이 아니라 낙관적 예측을 수행하는 경향이 있음을 발견할 수 있었다.

  • PDF