• Title/Summary/Keyword: Error Floor

Search Result 183, Processing Time 0.021 seconds

A Study on Thermal Heating Control Performance of Automatic Thermostatic Valves in Floor Radiant Heating System (바닥난방 시스템의 열환경 개선을 위한 제어방안 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon;Kim, Kyung-Chul;Jang, Sa-Yun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.973-978
    • /
    • 2009
  • In this study, the thermal environment characteristics of On-Off control and thermal difference proportional control method in floor radiant heating system were researched by computer simulation. For the analysis of unsteady heat transfer phenomena in household, the method of using electrical equivalent R-C circuit is applied, and radiation heat transfer between panel, ceiling and walls in household is calculated by enclosure analysis method. The parametric study on two control methods, conventional on-off control and temperature error based time control(T.E.B.T.C.) method, are performed to compare thermal heating control performances, respectively.

  • PDF

Multistage Parallel Nulling-Partial PIC Receiver for Downlink MIMO MC-CDMA Systems (하향링크 다중 안테나 MC-CDMA 시스템을 위한 다단계 병렬 널링 및 병렬 부분 간섭 제거 수신기 설계)

  • 구정회;김경연;심세준;이충용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.1-7
    • /
    • 2004
  • We propose multistage parallel nulling (MPN) partial parallel interference cancellation (PPIC) receiver for downlink multiple-input multiple-output (MIMO) multicarrier (MC)-code division multiple access (CDMA) systems. Though the V-BLAST is a popular MIMO receiver, it shows error floor for multiuser downlink MIMO MC-CDMA systems. The proposed MPN-PPIC receiver does not produce error floor for multiuser case, and achieves substantial performance gains with multistage processing. For single user case, the proposed method also surpasses the V-BLAST receiver with multistage processing for MIMO MC-CDMA systems with chip level interleaving. The system performance of the proposed MPN-PPIC receiver is evaluated through computer simulations.

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

Performance of Serial Concatenated Convolutional Codes according to the Concatenation Methods of Component Codes (구성부호의 연접방법에 따른 직렬연접 길쌈부호의 성능)

  • Bae, Sang-Jae;Lee, Sang-Hoon;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.18-25
    • /
    • 2002
  • In this paper, the performance of three types of serial concatenated convolutional codes (SCCC) in AWGN (additive white Gaussian noise) channel is compared and analyzed. As results of simulations, it can be observed that Type I shows the best error performance at lower signal-to-noise ratio (SNR) region. However, Type III shows the best error performance at higher SNR region. It can be also observed the error floor that the performance cannot be improved even though increasing of the number of iterations and SNR at Type I. However, the performance of Type II and Type III are still improved over the five iterations at higher SNR without error floor. And BER performance of three types can be closed to upper bound of three types with increase of SNR. It can be also observed that the upper bound of Type III shows the best performance among the three types due to the greatest free distance.

Analysis Third-dimension Turbo Code for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 Third-dimension Turbo Code 분석)

  • Park, Tae-Doo;Kim, Min-Hyuk;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.279-285
    • /
    • 2011
  • The next generation wireless communication systems are required high BER performance better than present performance. Double binary Turbo code have error floor at high SNR, so it cannot be used in next generation wireless communication system. Therefore, many methods are proposed for overcome error floor at DVB-RCS NG(next generation). In this paper, we analysis structure of third-dimension Turbo code(3D-turbo code). 3D-Turbo code overcomes error flow by additive post-encoder in conventional DVB-RCS Turbo code. Performance of 3D-Turbo code is changed by post-encoder form, interleaving method, value of ${\lambda}$. So we are simulated by those parameter and proposed optimal form. By a result, performance of 3D-Turbo is better than conventional DVB-RCS Turbo code and it overcome error floor of conventional DVB-RCS Turbo code.

Effects of transport time and feeding type on weight loss, meat quality and behavior of broilers

  • Fu, Yajie;Yin, Jingwen;Zhao, Ning;Xue, Ge;Zhang, Runxiang;Li, Jianhong;Bao, Jun
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.1039-1047
    • /
    • 2022
  • Objective: The purpose of this study is to determine the optimal time of transportation of floor-feed and scatter-feed broilers. Methods: Eighty healthy Arbor Acres (AA) broilers (21-day-old, 624.4 g, male, standard error = 6.65) were selected and randomly divided into two experimental groups (floor-feed and scatter-feed), then fed for three weeks. The experiment comprised a 2×4 factorial design with 2 feed patterns (floor-feed and scatter-feed) and 4 transport periods (2, 3, 4, and 5 h), and 4 replicates of 5 broilers (54-day-old, 2243 g, standard error = 46.65) was used to compare weight loss, meat quality and behavior index of different groups. Results: It appeared that drip loss, meat color and resting behavior of experimental broilers changed as length of transportation (p<0.05), however, weight loss and pH were not significantly transformed (p>0.05). Compared with floor-feed group, broilers in scatter-feed group had lower pH at 24 hours (3 h) and different behavioral indicators (p<0.05). Especially indicators after 3 h transportation, there were obvious differences between the two feeding modes in the behavior reaction of stress events before slaughter with different transport duration (p<0.05). The fluctuation of data on resting behavior with scatter-feed was significantly higher than that of floor-feed broilers. There was no interaction between transport time and different feeding methods for index tested of our experiment (p>0.05). Conclusion: Comprehensive analysis showed that the maximum transport duration of floor-feed and scatter-feed broilers should not exceed 3 h, and scatter-feed broilers were more likely prone to fear.

A General Method for Error Probability Computation of UWB Systems for Indoor Multiuser Communications

  • Durisi, Giuseppe;Tarable, Alberto;Romme, Jac;Benedetto, Sergio
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.354-364
    • /
    • 2003
  • A general method for the evaluation of the symbol error probability (SER) of ultra wideband (UWB) systems with various kind of modulation schemes (N-PAM, M-PPM, Bi-Orthogonal), in presence of multipath channel, multiuser and strong narrowband interference, is presented. This method is shown to be able to include all the principal multiaccess techniques proposed so far for UWB, time hopping (TH), direct sequence (DS) and optical orthogonal codes (OOC). A comparison between the performance of these multiple access and modulation techniques is given, for both ideal Rake receiver and minimum mean square error (MMSE) equalizer. It is shown that for all the analyzed multiple access schemes, a Rake receiver exhibits a high error floor in presence of narrowband interference (NBI) and that the value of the error floor is in-fluenced by the spectral characteristics of the spreading code. As expected, an MMSE receiver offers better performance, representing a promising candidate for UWB systems. When the multiuser interference is dominant, all multiple access techniques exhibit similar performance under high-load conditions. If the number of users is significantly lower than the spreading factor, then DS outperforms both TH and OOC. Finally 2PPM is shown to offer better performance than the other modulation schemes in presence of multiuser interference; increasing the spreading factor is proposed as a more effective strategy for SER reduction than the use of time diversity.

A Case of Sprinkler Non-Working by Programming Error (프로그래밍 오류에 의한 스프링클러 미작동 사례)

  • Seo, Young-Il;Cho, Young-Jin;Moon, Byung-Seon;Park, Jong-Jin;Park, Jong-Chan;Park, Nam-Kyu
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • According to the Fire Services Act revised in 2005, it has been required to set up sprinkler systems to all floors to the newly builded apartments having above 11 floors. But, according to the Fire Services Act before 2005, it had been required to set up sprinkler systems from 16 floors to the top floors to the apartments having above 16 floors. This case is the accident that a victim was dead by the fire which is inferred as an accidental fire by a cigarette butt in a 17th floor apartment unit in an apartment having 17th floors and that the bereaved family called in question why the sprinklers non worked at the fire. Through the field investigation, we checked that the sprinklers worked well when the fire detectors at the 16th floor of the apartment were operated and that the sprinklers non worked when the fire detectors at the 17th floor of the apartment were operated. We made clear that the cause of the sprinkler non-working at the 17th floor is the programming error of the sprinkler controller.

An In-situ Correction Method of Position Error for an Autonomous Underwater Vehicle Surveying the Sea Floor

  • Lee, Pan-Mook;Jun, Bong-Huan;Park, Jin-Yeong;Shim, Hyung-Won;Kim, Jae-Soo;Jung, Hun-Sang;Yoon, Ji-Young
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.60-67
    • /
    • 2011
  • This paper presents an in-situ correction method to compensate for the position error of an autonomous underwater vehicle (AUV) near the sea floor. AUVs generally have an inertial navigation system assisted with auxiliary navigational sensors. Since the inertial navigation system shows drift in position without the bottom reflection of a Doppler velocity log, external acoustic positioning systems, such as an ultra short baseline (USBL), are needed to set the position without surfacing the AUV. The main concept of the correction method is as follows: when the AUV arrives near the sea floor, the vehicle moves around horizontally in a circular mode, while the USBL transceiver installed on a surface vessel measures the AUV's position. After acquiring one data set, a least-square curve fitting method is adopted to find the center of the AUV's circular motion, which is transferred to the AUV via an acoustic telemetry modem (ATM). The proposed method is robust for the outlier of USBL, and it is independent of the time delay for the data transfer of the USBL position with the ATM. The proposed method also reduces the intrinsic position error of the USBL, and is applicable to the in-situ calibration as well as the initialization of the AUVs' position. Monte Carlo simulation was conducted to verify the effectiveness of the method.

A Modified Sum-Product Algorithm for Error Floor Reduction in LDPC Codes (저밀도 패리티 검사부호에서 오류마루 감소를 위한 수정 합-곱 알고리즘)

  • Yu, Seog-Kun;Kang, Seog-Geun;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.423-431
    • /
    • 2010
  • In this paper, a modified sum-product algorithm to correct bit errors captured within the trapping sets, which are produced in decoding of low-density parity-check (LDPC) codes, is proposed. Unlike the original sum-product algorithm, the proposed decoding method consists of two stages. Whether the main cause of decoding failure is the trapping sets or not is determined at the first stage. And the bit errors within the trapping sets are corrected at the second stage. In the modified algorithm, the set of failed check nodes and the transition patterns of hard-decision bits are exploited to search variable nodes in the trapping sets. After inverting information of the variable nodes, the sum-product algorithm is carried out to correct the bit errors. As a result of simulation, the proposed algorithm shows continuously improved error performance with increase in the signal-to-noise ratio. It is, therefore, considered that the modified sum-product algorithm significantly reduces or possibly eliminates the error floor in LDPC codes.