• 제목/요약/키워드: Error Floor

검색결과 183건 처리시간 0.021초

실내 자율주행 로봇을 위한 3차원 다층 정밀 지도 구축 및 위치 추정 알고리즘 (3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots)

  • 강규리;이대규;심현철
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.25-31
    • /
    • 2022
  • Moving among multiple floors is one of the most challenging tasks for indoor autonomous robots. Most of the previous researches for indoor mapping and localization have focused on singular floor environment. In this paper, we present an algorithm that creates a multi-floor map using 3D point cloud. We implement localization within the multi-floor map using a LiDAR and an IMU. Our algorithm builds a multi-floor map by constructing a single-floor map using a LOAM-based algorithm, and stacking them through global registration that aligns the common sections in the map of each floor. The localization in the multi-floor map was performed by adding the height information to the NDT (Normal Distribution Transform)-based registration method. The mean error of the multi-floor map showed 0.29 m and 0.43 m errors in the x, and y-axis, respectively. In addition, the mean error of yaw was 1.00°, and the error rate of height was 0.063. The real-world test for localization was performed on the third floor. It showed the mean square error of 0.116 m, and the average differential time of 0.01 sec. This study will be able to help indoor autonomous robots to operate on multiple floors.

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

반송파 주파수 옵셋에 따른 OFDM M-ary QAM 시스템의 성능 분석 (Performance of OFDM M-ary QAM System in the presence of Carrier Frequency Offset)

  • 계선형;유형석;서종수
    • 한국통신학회논문지
    • /
    • 제24권6B호
    • /
    • pp.1024-1031
    • /
    • 1999
  • 본 논문에서는 고속 광대역의 정보신호를 다중경로 페이딩 환경에서 효율적으로 전송하기 위하여 M-ary QAM(Quadrature Amplitude Modulation) 신호와 OFDM(Orthogonal Frequency Division Multiplexing : 직교 주파수 분할 다중화) 전송방식을 사용할 때, 반송파의 주파수 \ulcorner셋이 발생하는 동기오차가 수신시스템에 미치는 영향과 이에 따른 OFDM-16QAM 및 OFDM-64QAM의 수신 SER(Symbol Error Rate) 성능을 분석하였다. 분석 결과, OFDM 전송시스템에서 반송파의 주파수 \ulcorner셋에 의한 인접 부채널간 간섭은 부반송파의 개수에 비례하여 크게 증가하였고, 높은 신호대 잡음전력비에서도 SER 성능에 error floor가 발생하였다. 즉, OFDM-64QAM의 경우, OFDM-16QAM보다 주파수 \ulcorner셋에 의한 SER 성능열화가 커서 정규화된 반송파의 주파수 \ulcorner셋이 0.011일 때 SER=1$\times$10-7에서 error floor가 발생하였다. 따라서, 본 연구를 통해 OFDM-16QAM과 OFDM-64QAM 시스템에서 요구 SER 성능을 만족하기 위해 허용 가능한 최대 주파수 \ulcorner셋을 결정할 수 있다.

  • PDF

Lowering Error Floor of LDPC Codes Using an Improved Parallel WBF Algorithm

  • Ma, Kexiang;Li, Yongzhao;Zhu, Caizhi;Zhang, Hailin;Zhang, Yuming
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.171-174
    • /
    • 2014
  • In weighted bit-flipping-based algorithms for low-density parity-check (LDPC) codes, due to the existence of overconfident incorrectly received bits, the metric values of the corresponding bits will always be wrong in the decoding process. Since these bits cannot be flipped, decoding failure results. To solve this problem, an improved parallel weighted bit flipping algorithm is proposed. Specifically, a reliability-saturation strategy is adopted to increase the flipping probability of the overconfident incorrectly received bits. Simulation results show that the error floor of LDPC codes is greatly lowered.

오류 마루 현상이 완화된 비이진 LDPC 부호의 설계 및 성능 분석 연구 (Design and Performance Analysis of Nonbinary LDPC Codes With Low Error-Floors)

  • 안석기;임승찬;양영오;양경철
    • 한국통신학회논문지
    • /
    • 제38C권10호
    • /
    • pp.852-857
    • /
    • 2013
  • 본 논문은 오류 마루 영역에서 우수한 성능을 가지는 비이진 LDPC (low-density parity-check) 부호의 설계 방법을 제안하고 성능을 검증한다. 제안된 설계 방법은 비이진 LDPC 부호의 이진 최소 거리(binary minimum distance)를 최대화하도록 패리티 검사 행렬의 비이진 원소 값들을 결정한다. BPSK (binary phase-shift keying) 변조 방식 하에서 제안된 방법으로 설계된 비이진 LDPC 부호가 오류 마루(error floor) 영역에서 우수한 성능을 가지는 것을 Monte Carlo 시뮬레이션과 중요도 표본 추출(importance sampling) 기법을 사용하여 검증한다.

LDPC Decoding by Failed Check Nodes for Serial Concatenated Code

  • Yu, Seog Kun;Joo, Eon Kyeong
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.54-60
    • /
    • 2015
  • The use of serial concatenated codes is an effective technique for alleviating the error floor phenomenon of low-density parity-check (LDPC) codes. An enhanced sum-product algorithm (SPA) for LDPC codes, which is suitable for serial concatenated codes, is proposed in this paper. The proposed algorithm minimizes the number of errors by using the failed check nodes (FCNs) in LDPC decoding. Hence, the error-correcting capability of the serial concatenated code can be improved. The number of FCNs is simply obtained by the syndrome test, which is performed during the SPA. Hence, the decoding procedure of the proposed algorithm is similar to that of the conventional algorithm. The error performance of the proposed algorithm is analyzed and compared with that of the conventional algorithm. As a result, a gain of 1.4 dB can be obtained by the proposed algorithm at a bit error rate of $10^{-8}$. In addition, the error performance of the proposed algorithm with just 30 iterations is shown to be superior to that of the conventional algorithm with 100 iterations.

수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구 (The Study about Channel code to Overcome Multipath of Underwater Channel)

  • 김남수;김민혁;박태두;김철승;정지원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.

낮은 에러 플로어(error floor)를 사용한 효과적인 LDPC 복호 알고리듬 (An Effective Decoding Algorithm of LDPC Codes with Lowering Error Floors)

  • 왕석신;서희종
    • 한국전자통신학회논문지
    • /
    • 제9권10호
    • /
    • pp.1111-1116
    • /
    • 2014
  • 본 논문에서는, LDPC 코드의 성능을 향상시키기 위해서, LDPC 코드의 에러 플로어(error floors)를 낮추어서 복호를 수행하는 효율 좋은 알고리듬을 제안한다. 이 방법은, 바람직하지 않은 구조 때문인데, Tanner 그래프의 트래핑 세트를 줄여서 복호를 하는 방법이다. 이 알고리듬은 트래핑 세트를 줄이는 방법으로 복호의 효율성을 얻는다. 모의시험을 통해서 이 알고리듬의 개선된 성능을 확인 할 수 있었다.