• Title/Summary/Keyword: Erosion resistant

Search Result 48, Processing Time 0.038 seconds

The relationships of erosion and river channel change in the Geum river basin (금강유역의 침식과 하상변동과의 관계)

  • 양동윤;짐주용;이진영;이창범;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.52-74
    • /
    • 2000
  • The basement rock of upper stream of Keum River Valley consists of Precambrian gneiss which is resistant to weathering. That of mid and lower stream valley, however, is mainly composed of Mesozoic granites which are vulnerable to weathering. The upstream part of Geum River Basin is typified by the deeply-incised and steep meandering streams, whereas mid and lower part is characterized by wide floodplain and gently dipping river bottom toward the Yellow Sea. In particular flooding deposits, in which are imprinted a number of repetitions of erosion and sedimentation during the Holocene, are widely distributed in the lower stream of Geum River Basin. For understanding of erosions in the mid and lower stream of Geum River Basin, the rate of erosion of each small basins were estimated by using the data of field survey, erosional experiments and GIS ananlysis. It was revealed that erosion rate appeared highest in granite areas, and overall areas, in this field survey were represented by relatively high erosion rates. By implemeatation of remote sensing and imagery data, the temporal changes of river bed sediments for about last 11 years were successfully monitored. Observed as an important phenomenon is that the river bed has been risen since 1994 when an embankment (Dyke) was constructed in the estuarine river mouth. From the results derived from the detailed river bed topographical map made in this investigation, the sedimentation of the lower river basin is considered to be deposited with about 5 cm/year for the last 11 years. Based on this river bed profile analysis by HEC-6 module, it is predicted that Geum River bed of Ganggyeong area is continuously rising up in general until 2004. Although extraction of a large amount of aggregates from Gongju to Ganggyung areas, the Ganggyung lower stream shows the distinct sedimentation. Therefore, it is interpreted that the active erosions of tributary basins Geum drainage basins can affect general river bed rising changes of Geum River.

  • PDF

Cavitation resistance of concrete containing different material properties

  • Kumar, G.B. Ramesh;Bhardwaj, Arjit;Sharma, Umesh Kumar
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.15-28
    • /
    • 2018
  • In the present investigation, influence of various material parameters on the cavitation erosion resistance of concrete was investigated on the basis of laboratory experiments. As there is no well-established laboratory test method for evaluating the cavitation resistance of concrete, a test set up called 'cavitation jet' was specially established in the present study in order to simulate the cavitation phenomenon experienced in the hydraulic structures. Various mixtures of concrete were designed by varying the grade of concrete, type and quantity of pozzolana, type of aggregates and cement type to develop good cavitation resistant concrete constructed using marginal aggregates. Three types of aggregates having three different Los Angeles abrasion values (less than 30%, between 30% and 50% and more than 50%) were employed in this study. To evaluate the cavitation resistance a total of 60 cylindrical specimens and 60 companion cubes were tested in the laboratory respectively. The results indicate that cavitation resistance of concrete degrades significantly as the L.A. abrasion value of aggregates goes beyond the 30% value. Incorporation of pozzolanic admixtures was seemed to be beneficial to enhance the cavitation resistance of concrete. Influence of other material parameters on the cavitation resistance of concrete was also noted and important observations have been made in the paper.

Plasma Resistances of Yttria Deposited by EB-PVD Method (EB-PVD법으로 코팅된 Y2O3의 내플라즈마 특성)

  • Kim, Dae-Min;Yoon, So-Young;Kim, Kyeong-Beom;Kim, Hui-Sik;Oh, Yoon-Suk;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.707-712
    • /
    • 2008
  • Plasma resistant nanocrystalline $Y_2O_3$ films were deposited on alumina substrates through the electron-beam PVD technique. Increasing substrate temperature to $600^{\circ}C$ resulted in the textured microstructures with significantly enhanced adhesion force of the coating to the substrate. During the exposure to fluorine plasma, erosion rate of the coated specimen was higher than that of a sintered yttria specimen, but significantly lower than that of a single crystalline alumina. Considering the adhesion and erosion behaviors observed in the coated specimen prepared at $600^{\circ}C$, the deposition technique appears effective in reducing contamination particles generated from the ceramic parts in the plasma environment.

A Study on the Characteristics of Inorganic Polymer Mortar for Concrete Sectional Rehabilitation (콘크리트 단면복구용 무기성 모르타르의 특성에 관한 연구)

  • Hwang, Tae-Ha;Song, Tae-Hyeob;Im, Chil-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • As concrete structures are exposed to chemical substances, damaged from salt, or progressed to the neutralization, the surface damage of the structures is generated timely fashion, resulting shortened service life. Especially, the sulfate erosion causes rapid surface defects, and the steel skeleton becomes corroded due to the water infiltration, generating stability deterioration of the concrete structure. In this study, the physical characteristics of the acid-resistant mortar with aluminosilicates was investigated in order to resolve problems of the acid resistance, one of the most serious problems of the cement type repair material. As the result of the experiment, the test specimen turned to exhibit almost equivalent physical characteristics with those of concrete sectional repair materials in terms of compressive and bending strengths. As both the cement sectional repair material and the test specimen were immerged in sulfuric acid solution to examine weight changes, the test specimens exhibited only 4% loss of their weights while the cement sectional repair materials reached at the level of 80% or above, proving the excellence acid resistant characteristics of the test specimens. Consequently, the physical characteristics of acid resistant mortar with aluminosilicates were revealed to be superior than those of concrete sectional repair materials. It can be utilized as a sectional repair material where the acidic erosion is anticipated.

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

Topographic Relief and Denudation Resistance by Geologic Type in the Southern Korean Peninsula (한반도 남부의 지질 유형별 지형 기복과 삭박 저항력)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study tried to reveal relative surface denudation resistance and ranking by geologic types in the Southern Korean Peninsula using an 1:250,000 digital geologic map and ASTER GDEM. Among rock types such as igneous, sedimentary and metamorphic rocks, metamorphic rock showed the greatest resistance to surface denudation. The most resistant rock to surface denudation by geologic periods (e.g., the Precambrian, Paleozoic, Mesozoic and Cenozoic) was found from the Precambrian. Among the major tectonic settings in the Southern Korean Peninsula such as the Gyeonggi massif, Okcheon belt, Yeongnam massif, Gyeongsang basin and Pohang basin, the Okcheon belt indicated the greatest resistance. The most and least resistant rocks from the representative nine rocks in the Southern Korean Peninsula were Paleozoic limestone, and Cretaceous sedimentary rock and Cenozoic sedimentary rock, respectively. This study suggests that Paleozoic limestone, Cretaceous volcanic rock, Paleozoic sedimentary rock and Precambrian gneiss can be regarded as hard rocks with high elevation, steep slope and complicated relief, while soft rocks with low elevation, gentle slope and simple relief are Jurassic granite, Cretaceous sedimentary rock and Cenozoic sedimentary rock.

Characteristics and classification of landform relieves on mountains and valleys with bedrock types (기반암별 산지와 곡지의 지형 기복 특성과 유형)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.1-17
    • /
    • 2014
  • This study analyzed characteristics of landform relieves on 12 bedrock whole(W) areas and 24 mountain(M) and valley(V) areas. Based on this result, characteristics and relations between bedrocks and landform relief were classified as follows. 1) gneiss-height M and granite-height W, M, V areas show active stream incision for uplift. However these areas have relatively low relief and grade compared to high altitude, because effect of denudation don't pass on whole slope. 2) gneiss-height W, V, gneiss-mid M, schist M, granite-mid M, volcanic rock W, M, sedimentary rock-height(conglomerate) W, M, V, sedimentary rock-mid (sandstone and shale) M, limestone W, M areas have active stream erosion and mass movement, but landform relieves are on the high side, because these have resistant bedrock and geological structure against weathering and erosion. 3) gneiss-mid W, V, schist W, V, granite-mid W, V, volcanic rock V, sedimentary rock-mid W, V, sedimentary rock-low(shale) M, limestone V areas landform relieves are on the low side, because these have weak resistance and active weathering, mass movement, erosion, transportation and deposit. 4) gneiss-low W, M, V, granite-low W, M, V, sedimentary rock-low W, V areas landform relieves are very low, because these don't have active erosion and mass movement as costal area with low altitude.

Developing Landscape Analysis Method for Forest Fire Damaged Area Restoration Using Virtual GIS (Virtual GIS를 이용한 산불피해지 복구 경관분석기법 개발)

  • Jo, Myung-Hee;Lee, Myung-Bo;Kim, Joon-Bum;Lim, Ju-Hun;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • In Korea the number of forest fire occurrence and its damaged area have increased drastically and the plans for afforestation such as sound erosion control restoration and forestation have performed to restore for forest fire damaged area. In this study fire resistant forest was developed by selecting fire resistance tree species and applying GIS analysis, considering the characteristic of forest fire and location environment in forest fire damaged area along the east coast. Moreover, it showed the possibility of how spatial information technology such as virtual GIS could be applied during restoring forest fire damaged area and approaching landscape ecology researches. Especially the fire resistant forest was established by using GIS analysis against large scaled forest fires then the best forest arrangement was performed through this fire resistant forest species and 3D modeling in study area. In addition, the forest landscape was established through site index on passing years and then 3D topography and tracking simulation, which is very similar to real world, were constructed by using virtual GIS.

  • PDF

Problems of lake water management in Korea (한국의 호수 수질관리의 문제점)

  • 김범철;전만식;김윤희
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.105-126
    • /
    • 2003
  • In Korea most of annual rainfall is concentrated in several episodic heavy rains during the season of summer monsoon and typhoon. Because of uneven rainfall distribution many dams have been constructed in order to secure water supply in dry seasons. The Han River system has the most dams among Korean rivers, and the river is a series of dams now. Reservoirs need different strategy of water quality control from river water. Autochthonous organic matter and phosphorus should be the major target to be controlled in lakes. In this Paper some problems are discussed that makes efforts of water quality improvement ineffective in lakes of Korea, even after the substantial investment to wastewater treatment facilities.1) Phosphorus is the key factor controlling eutrophication of lakes and the reduction ofphosphors should be the major target of water treatment. However, water quality management strategy in Korea is still stream-oriented, and focused on BOD removal from sewage. Phosphorus removal efficiency remains as low as 10-30%, because biological treatment is adopted for both secondary treatment and advanced treatment. The standard for TP concentration of the sewage treatment plant effluent is 6 mgP/l in most of regions, and 2 mg/l in enforced region near metropolitan water intake point. TP in the effluents of sewage treatment plants are usually 1-2 mg/1, and most of plants meet the effluent regulation without a further phosphorus removal process. The generous TP standard for effluents discourages further efforts to improve phosphorus removal efficiency of sewage treatment. Considering that TP standard for the effluent is below 0.1 mg/l in some countries, it should be amended to below 0.1 mg/l in Korea, especially in the watershed of large lakes.2) Urban runoff and combined sewer overflow are not treated, even though their total loading into lakes can be comparable to municipal sewage discharges on dry days. Chemical coagulation and rapid settling might be the solution to urban runoff in regard of intermittent operation on only rainy days.3) Aggregated precipitation in Korea that is concentrated on several episodic heavyrains per year causes a large amount of nonpoint source pollution loading into lakes. It makes the treatment of nonpoint source discharge by methods of other countries of even rain pattern, such as retention pond or artificial wetland, impractical in Korea.4) The application rate of fertilizers in Korea is ten times as high as the average ofOECD countries. The total manure discharge from animal farming is thought to be over the capacity of soil treatment in Korea. Even though large portion of manure is composted for organic fertilizer, a lot of nutrients and organic matter emanates from organic compost. The reduction of application rate and discharge rate of phosphorus from agricultural fields should be encouraged by incentives and regulations.5) There is a lot of vegetable fields with high slopes in the upstream region of the HanRiver. Soil erosion is severe due to high slopes, and fertilizer is discharged in the form of adsorbed phosphorus on clay surface. The reduction of soil erosion in the upland area should be the major preventive policy for eutrophication. Uplands of high slope must be recovered to forest, and eroded gullies should be reformed into grass-buffered natural streams which are wider and resistant to bank erosion.

  • PDF