• Title/Summary/Keyword: Eringen's nonlocal elasticity

Search Result 80, Processing Time 0.023 seconds

Semi-analytical vibration analysis of functionally graded size-dependent nanobeams with various boundary conditions

  • Ebrahimi, Farzad;Salari, Erfan
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, free vibration of functionally graded (FG) size-dependent nanobeams is studied within the framework of nonlocal Timoshenko beam model. It is assumed that material properties of the FG nanobeam, vary continuously through the thickness according to a power-law form. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The non-classical governing differential equations of motion are derived through Hamilton's principle and they are solved utilizing both Navier-based analytical method and an efficient and semi-analytical technique called differential transformation method (DTM). Various types of boundary conditions such as simply-supported, clamped-clamped, clamped-simply and clamped-free are assumed for edge supports. The good agreement between the presented DTM and analytical results of this article and those available in the literature validated the presented approach. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of FG nanobeams. The obtained results show the significance of the material graduation, nonlocal effect, slenderness ratio and boundary conditions on the vibration characteristics of FG nanobeams.

An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza;Boreiry, Mahya
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.179-200
    • /
    • 2016
  • In this paper the differential transformation method (DTM) is utilized for vibration and buckling analysis of nanotubes in thermal environment while considering the coupled surface and nonlocal effects. The Eringen's nonlocal elasticity theory takes into account the effect of small size while the Gurtin-Murdoch model is used to incorporate the surface effects (SE). The derived governing differential equations are solved by DTM which demonstrated to have high precision and computational efficiency in the vibration analysis of nanobeams. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of thermal loading, small scale and surface effects, mode number, thickness ratio and boundary conditions on the normalized natural frequencies and critical buckling loads of the nanobeams in detail. The results show that the surface effects lead to an increase in natural frequency and critical buckling load of nanotubes. It is explicitly shown that the vibration and buckling of a nanotube is significantly influenced by these effects and the influence of thermal loadings and nonlocal effects are minimal.

Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.391-403
    • /
    • 2019
  • In this article the frequency response analysis of curved magneto-electro-viscoelastic functionally graded (CMEV-FG) nanobeams resting on viscoelastic foundation has been carried out. To this end, the study incorporates the Euler-Bernoulli beam model in association with Eringen's nonlocal theory to incorporate the size effects. The viscoelastic foundation in the current investigation is assumed to be the combination of Winkler-Pasternak layer and viscous layer of infinite parallel dashpots. The equations of motion are derived with the aid of Hamilton's principle and the solution to vibration problem of CMEV-FG nanobeams are obtained analytically. The material gradation is considered to follow Power-law rule. This study thoroughly investigates the influence of prominent parameters such as linear, shear and viscous layers of foundation, structural damping coefficient, opening angle, magneto-electrical field, nonlocal parameter, power-law exponent and slenderness ratio on the frequencies of FG nanobeams.

Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method

  • Emadi, Maryam;Nejad, Mohammad Zamani;Ziaee, Sima;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.565-581
    • /
    • 2021
  • In this paper the buckling analysis of the nanoplate made of arbitrary bi-directional functionally graded (BDFG) materials with small scale effects are investigated. To study the small-scale effects on buckling load, the Eringen's nonlocal theory is applied. Employing the principle of minimum potential energy, the governing equations are obtained. Generalize differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the buckling load of BDFG nanoplates. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. Comparison between the results of GDQ method and other papers for buckling analysis of a simply supported rectangular nano FGM plate reveals the accuracy of GDQ method. At the end some numerical results are presented to study the effects of material length scale parameter, plate thickness, aspect ratio, Poisson's ratio boundary condition and side to thickness ratio on size dependent Frequency.

Structural stability analysis of nonlocal Megneto-Electro-Elastic(MEE) nano plates on elastic foundation (탄성지반위에 놓인 비국소 자기-전기-탄성 나노 판의 구조안정해석)

  • Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.52-60
    • /
    • 2017
  • This study examined the structural stability of nonlocal magneto-electro-elastic nano plates on elastic foundations using first-order shear deformation theory. Navier's method has been used to solve the buckling loads for all edges simply supported boundary conditions. On the other hand, biaxial buckling analysis of nano-plates has beenrarely studied. According to the Maxwell equation and the magneto-electro boundary condition, the change inthe magnetic and electric potential along the thickness direction of the magneto-electro-elastic nano plate wasdetermined. To reformulate the elasticity theory of the magneto- electro-elastic nano plate, the differential constitutive equation of Eringen was used and the governing equation of the nonlocal elasticity theory was studied using variational theory. The effects of the elastic foundation arebased on Pasternak's assumption. The relationship between nonlocal theory and local theory was analyzed through calculation results. In addition, structural stability problems were investigated according to the electric and magnetic potentials, nonlocal parameters, elastic foundation parameters, and side-to-thickness ratio. The results of the analysis revealedthe effects of the magnetic and electric potential. These calculations can be used to compare future research on new material structures made of magneto-electro-elastic materials.

Vibration analysis of carbon nanotubes with multiple cracks in thermal environment

  • Ebrahimi, Farzad;Mahmoodi, Fatemeh
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.57-80
    • /
    • 2018
  • In this study, the thermal loading effect on free vibration characteristics of carbon nanotubes (CNTs) with multiple cracks is studied. Various boundary conditions for nanotube are taken in to account. In order to take the small scale effect, the nonlocal elasticity of Eringen is employed in the framework of Euler-Bernoulli beam theory. This theory states that the stress at a reference point is a function of strains at all points in the continuum. A cracked nanotube is assumed to be consisted of two segments that are connected by a rotational spring which is located in the position of the cracked section. Hamilton's principle is used to achieve the governing equations. Influences of the nonlocal parameter, crack severity, temperature change and the number of cracks on the system frequencies are investigated. Also, it is found that at room or lower temperature the natural frequency for CNT decreases as the value of temperature change increases, while at temperature higher than room temperature the natural frequency of CNT increases as the value of temperature change increases. Various boundary conditions have been applied to the nanotube.

Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.205-214
    • /
    • 2018
  • In this paper, the thermo-mechanical buckling characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal governing equations are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate critical buckling temperature results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as material distribution profile, small scale effects and aspect ratio on the critical buckling temperature of the FG nanobeams in detail. It is explicitly shown that the thermal buckling of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Ultrasonic waves in a single walled armchair carbon nanotube resting on nonlinear foundation subjected to thermal and in plane magnetic fields

  • Selvamani, Rajendran;Jayan, M. Mahaveer Sree;Ebrahimi, Farzad
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.39-60
    • /
    • 2021
  • The present paper is concerned with the study of nonlinear ultrasonic waves in a magneto thermo (MT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix. The analytical formulation is developed based on Eringen's nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analyzed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations. Parametric work is carried out to scrutinize the influence of the non local scaling, magneto-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter, and tube geometrical parameters have significant effects on dimensionless frequency of nano tubes. The results presented in this study can provide mechanism for the study and design of the nano devices like component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro- magneto-mechanical systems (NEMMS) that make use of the wave propagation properties of armchair single-walled carbon nanotubes embedded on polymer matrix.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory

  • Zemri, Amine;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.693-710
    • /
    • 2015
  • This paper presents a nonlocal shear deformation beam theory for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The developed theory account for higher-order variation of transverse shear strain through the depth of the nanobeam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. In addition, this nonlocal nanobeam model incorporates the length scale parameter which can capture the small scale effect and it has strong similarities with Euler-Bernoulli beam model in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.