• Title/Summary/Keyword: Ergosterol

Search Result 158, Processing Time 0.025 seconds

The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia

  • Juan Yang;Sungmin Park;Hyun Ju Kim;Sang Jun Lee;Won Hee Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.180-187
    • /
    • 2023
  • The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.

Antioxidant, anti-inflammatory, and cytotoxic properties of fruiting bodies and their mycelia as sources of Cordyceps

  • Si Young Ha;Ji Young Jung;Jae-Kyung Yang
    • Journal of Mushroom
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Mushrooms play crucial roles as reservoirs of naturally occurring bioactive compounds. Among these, Cordyceps militaris is significant because of its well-established reputation for organoleptic excellence and positive health effects, which have led to its widespread commercialization. In contrast, the key properties of Paecilomyces variotii, an ectomycorrhizal symbiont, has received limited attention. In alignment with current research trends, the study of the mycelia and culture media of these mushrooms hold promise in identifying potential sources of valuable bioactive compounds. In the present study, we investigated C. militaris and P. variotii for their phenolic acids and sterols, assessing antioxidant capacity, anti-inflammatory effects, and anti-proliferative activity. Interestingly, P. variotii mycelia exhibited higher concentrations of ergosterol and phenolic compounds, with comparable levels observed in the fruiting bodies, along with superior antioxidant activity compared to that of C. militaris. In contrast, C. militaris mycelia demonstrated anti-inflammatory effects (which were absent in P. variotii mycelia) and cytotoxicity comparable to, and at times exceeding, that of its fruiting bodies (in contrast to P. variotii). In addition, the species analyzed in this study displayed variations in growth rates and mycelial production, which merit consideration for potential future applications and further study.

Structure-Based Virtual Screening and Biological Evaluation of Non-Azole Antifungal Agent

  • Lee, Joo-Youn;Nam, Ky-Youb;Min, Yong-Ki;Park, Chan-Koo;Lee, Hyun-Gul;Kim, Bum-Tae;No, Kyoung-Tai
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.139-143
    • /
    • 2005
  • Cytochrome P450 14${\alpha}$-sterol demethylase enzyme (CYP51) is the target a of azole type antifungals. The azole blocks the ergosterol synthesis and thereby inhibits fungal growth. A three-dimensional (3D) homology model of CYP51 from Candida albicans was constructed based on the X-ray crystal structure of CYP51 from Mycobacterium tuberculosis. Using this model, the binding modes for the substrate (24-methylene-24, 25-dihydrolanosterol) and the known inhibitors (fluconazole, voriconazole, oxiconazole, miconazole) were predicted from docking. Virtual screening was performed employing Structure Based Focusing (SBF). In this procedure, the pharmacophore models for database search were generated from the protein-ligands interactions each other. The initial structure-based virtual screening selected 15 compounds from a commercial available 3D database of approximately 50,000 molecule library, Being evaluated by a cell-based assay, 5 compounds were further identified as the potent inhibitors of Candida albicans CYP51 (CACYP51) with low minimal inhibitory concentration (MIC) range. BMD-09-01${\sim}$BMD-09-04 MIC range was 0.5 ${\mu}$g/ml and BMD-09-05 was 1 ${\mu}$g/ml. These new inhibitors provide a basis for some non-azole antifungal rational design of new, and more efficacious antifungal agents.

  • PDF

Integracide K: A New Tetracyclic Triterpenoid from Desmodium uncinatum (Jacq.) DC. (Fabaceae)

  • Tsafack, Borice Tapondjou;Ponou, Beaudelaire Kemvoufo;Teponno, Remy Bertrand;Nono, Raymond Ngansop;Jenett-Siems, Kristina;Melzig, Matthias F.;Park, Hee Juhn;Tapondjou, Leon Azefack
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.113-118
    • /
    • 2017
  • A new tetracyclic triterpenoid [4,4,24-trimethylcholesta-${\Delta}^{8,9;14,5;24,28}$-trien-$3{\beta},11{\beta},12{\alpha}$-triol-12-acetate, 3-sulfate] sodium salt (1), together with eight known compounds including ergosterol $5{\alpha},8{\alpha}$-endoperoxide (2), 1,9-dihydroxy-3-methoxy-2-methylpterocarpan (3), 3-O-${\beta}$-D-2-acetyl-amino-2-deoxyglucopyranoxyloleanoic acid (4), hydnocarpin (5), derrone (6), isovitexin (7), erythrinin C (8), and 5,4'-dihydroxy-2"-hydroxyisopropyldihydrofurano [4,5:7,8]-isoflavone (9), were isolated from the EtOAc soluble fraction of the methanol extract of aerial part of Desmodium uncinatum collected in the western highland of Cameroon. The structures of these compounds were established by comprehensive interpretation of their spectral data mainly including 1D- ($^1H$ and $^{13}C$), 2D-NMR($^1H$-$^1H$ COSY, HMQC, HMBC) spectroscopic and ESI-TOF-MS mass spectrometric analysis. The isolation of an integracide-like compound from plant origin is a very unusual finding.

Zygosaccharomyces rouxii Combats Salt Stress by Maintaining Cell Membrane Structure and Functionality

  • Wang, Dingkang;Zhang, Min;Huang, Jun;Zhou, Rongqing;Jin, Yao;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Zygosaccharomyces rouxii is an important yeast that is required in the food fermentation process due to its high salt tolerance. In this study, the responses and resistance strategies of Z. rouxii against salt stress were investigated by performing physiological analysis at membrane level. The results showed that under salt stress, cell integrity was destroyed, and the cell wall was ruptured, which was accompanied by intracellular substance spillover. With an increase of salt concentrations, intracellular Na+ content increased slightly, whereas intracellular K+ content decreased significantly, which caused the increase of the intracellular Na+/K+ ratio. In addition, in response to salt stress, the activity of Na+/K+-ATPase increased from 0.54 to 2.14 μmol/mg protein, and the ergosterol content increased to 2.42-fold to maintain membrane stability. Analysis of cell membrane fluidity and fatty acid composition showed that cell membrane fluidity decreased and unsaturated fatty acid proportions increased, leading to a 101.21% rise in the unsaturated/saturated fatty acid ratio. The results presented in this study offer guidance in understanding the salt tolerance mechanism of Z. rouxii, and in developing new strategies to increase the industrial utilization of this species under salt stress.

Sensitivity to Ergosterol Biosynthesis Inhibiting-Fungicides of Colletotrichum gloeosporioides Isolated from Persimmon Trees (감나무로부터 분리한 Colletotrichum gloeosporioides의 스테롤 생합성 저해제에 대한 감수성)

  • Lim, Tae-Heon;Lee, Dong-Woon;Choi, Yong-Hwa;Lee, Sang-Myeong;Han, Sang-Sub;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.3
    • /
    • pp.171-176
    • /
    • 2009
  • In 2008, 110 isolates of Colletotrichum gloeosporioides were obtained from infected twigs of persimmon collected at Sangju and five fungicides (prochloraz manganese complex, tebuconazole, mancozeb+myclobutanil, fluquinconazole+prochloraz, and tebuconazole+tolyfluanid) were evaluated to determine their growth on fungicide-medium. Among them, the mycelial growth of 97.3 and 98.2% of isolates was inhibited over 91% in response to prochloraz ($250\;{\mu}g/m{\ell}$) and tebuconazole ($125\;{\mu}g/m{\ell}$), respectively, compared to untreated control. In response to mancozeb+myclobutanil, fluquinconazole+prochloraz, and tebuconazole+tolyfluanid, isolates of 96.4, 99.1 and 96.4% of them were inhibited by fungicides, respectively. Isolates showed the highest sensitivity to fluquinconazole+prochloraz among 5 fungicides. The correlation between tebuconazole and tebuconazole+tolyfluanid was higher (r=0.85).

Cloning and Expression in Pichia pastoris of a New Cytochrome P450 Gene from a Dandruff-causing Malassezia globosa

  • Lee, Eun-Chang;Ohk, Seul-Ong;Suh, Bo-Young;Park, Na-Hee;Kim, Beom-Joon;Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The Malassezia fungi are responsible for various human skin disorders including dandruff and seborrheic dermatitis. Of the Malassezia fungi, Malassezia globosa (M. globosa) is one of the most common in human scalp. The completed genome sequence of M. globosa contains four putative cytochrome P450 genes. To determine the roles of Malassezia P450 enzymes in the biosynthesis of ergosterol, we isolated MGL3996 gene from M. globosa chromosomal DNA by PCR. The MGL3996 gene encodes an enzyme of 616 amino acids, which shows strong similarity with known CYP52s of other species. MGL3996 gene was cloned and expressed in Pichia pastoris (P. pastoris) heterologous yeast expression system. Using the yeast microsomes expressing MGL3996 protein, a typical P450 CO-difference spectrum was shown with absorption maximum at 448 nm. SDS-PAGE analysis revealed a protein band of apparent molecular weight 69 kDa and Western blot with anti-histidine tag antibody showed that MGL3996 was successfully expressed in P. pastoris. Cloning and expression of a new P450 gene is an important step to study the P450 monooxygenase system of M. globosa and to understand the role of P450 enzymes in pathophysiology of dandruff.

Sterols Isolated from Nuruk (Rhizopus oryzae KSD-815) Inhibit the Migration of Cancer Cells

  • Lee, Dae-Young;Lee, Sang-Jin;Kwak, Ho-Young;Jung, La-Koon;Heo, Ji-Eun;Hong, Sung-Youl;Kim, Gye-Won;Baek, Nam-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1328-1332
    • /
    • 2009
  • An activity-guided fractionation method was used to isolate anticancer components from Nuruk (Rhizopus oryzae KSD-815:KSD-815). Dried powder of KSD-815 was extracted with 80% methanol and partitioned successively using n-hexane, ethyl acetate, n-butanol, and water. The n-hexane and n-butanol fractions showed a strong antimigratory effect on human cancer cells. Both of these fractions were subjected to separation and purification procedures using silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatographies to afford four purified compounds. These were identified as ergosterol peroxide (1), stigmast-5-en-$3\beta$,$7\beta$-diol (2), ergosta-7,22-dien-$3\beta$,$5\alpha$,$6\beta$,$9\alpha$-tetraol (3), and daucosterol (4), respectively, by spectroscopic methods such as nuclear magnetic resonance spectrometry, mass spectrometry, and infrared spectroscopy, and comparison with those in the literature. Compounds 1-4 were isolated from KSD-815 for the first time. Compounds 1 and 4 inhibited the migration of MDA-MB-231 cells at concentrations lower than $20\;{\mu}M$.

Simultaneous Determination of Six Components in the Traditional Herbal Medicine 'Oryeongsan' by HPLC-DAD and LC-MS/MS

  • Lee, Jiwoo;Weon, Jin Bae;Lee, Bohyoung;Yun, Bo-Ra;Eom, Min Rye;Ma, Choong Je
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • A simple high performance liquid chromatography - diode array detector (HPLC-DAD) method has been developed and validated for simultaneous determination of the six components (cinnamic acid, cinnamaldehyde, eugenol, atractylenolide I, atractylenolide III, and ergosterol) in Oryeongsan. In addition, identification of six marker compounds was conducted by a LC-MS/MS analysis. The six compounds in Oryeongsan were separated on Shishedo $C_{18}$ column (5 ${\mu}m$, $4.6{\times}250$ mm) at a column temperature of $30^{\circ}C$. The mobile phase was a mixture of 0.1% trifluoroacetic acid (TFA) water and acetonitrile employing gradient elution at a flow rate of 1.0 mL/min. The detection wavelength was set at 205, 250, 280, and 330 nm. The developed method had good linearity ($R^2$ > 0.9997) and the limit of detection (LOD) and limit of quantification (LOQ) were observed within the ranges 0.01~0.15 and 0.05~0.45 ${\mu}g/mL$, respectively. The relative standard deviation (RSD) values of intra- and inter-day testing were indicated that less than 3% and 90.31~103.31% of accuracy. The results of recovery test were 90.56~106.72% and RSD range was measured from 0.84 to 2.95%. In conclusion, this HPLC-DAD method has been successfully applied to the simultaneous determination of six compounds in Oryeongsan samples.

Antitumor compounds from fruiting bodies of cultivated fungus of Paecilomyces japonica

  • Nama Ryu;Lim, Soon-Sung;Jung, Sang-Hoon;Cho, Sae-Yun;Shin, Kuk-Hyun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.185-185
    • /
    • 1998
  • As part of our continuing attempts to evaluate biologically active compounds from fruiting bodies of cultivated fungus of Paecilomyces japonicus Yasuda, we conducted series of experiments on various fractions and compounds isolated by systematic fractionations. Our main efforts were concentrated on searching for compounds showing antitumor activities, which were tested on mice carrying Sarcoma-180 ascitic tumor. The antitumor activity was assessed by the life spans after these mice were administered Lp. with test compounds for consecutive 20 days. One of two pure compounds, which we have isolated to date, demonstrated significant prolongation of life span. ( Mean Survival Time: 30.3 days compared to that of control: 23.6 days). Structural analysis showed that this compound corresponds to D-mannitol. On the other hand, Ergosterol, another isolated pure compound didn't show efficient antitumor activity. We also obtained water-soluble fractions containing protein-bound polysaccharides and n-butantol fractions, which showed strong antitumor activities, 35.4(150%) and 32.1(136.0%) days of MST, respectively. In SRB assay, however, the test materials didn't show any toxic effects, but the level of acid phosphatase increased significantly when they were applied in cultured macrophage in vitro. Therefore, we concluded that antitumour activities might be attributed to immunostimulating rather than cytotoxic effects. Further experiments are underway to purify and structurally characterize new antitumour compounds from the active fractions.

  • PDF