DOI QR코드

DOI QR Code

Antioxidant, anti-inflammatory, and cytotoxic properties of fruiting bodies and their mycelia as sources of Cordyceps

  • Si Young Ha (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University) ;
  • Ji Young Jung (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University) ;
  • Jae-Kyung Yang (College of Agriculture and Life Sciences, Department of Environmental Materials Science, GyeongSang National University)
  • Received : 2024.01.31
  • Accepted : 2024.03.20
  • Published : 2024.03.31

Abstract

Mushrooms play crucial roles as reservoirs of naturally occurring bioactive compounds. Among these, Cordyceps militaris is significant because of its well-established reputation for organoleptic excellence and positive health effects, which have led to its widespread commercialization. In contrast, the key properties of Paecilomyces variotii, an ectomycorrhizal symbiont, has received limited attention. In alignment with current research trends, the study of the mycelia and culture media of these mushrooms hold promise in identifying potential sources of valuable bioactive compounds. In the present study, we investigated C. militaris and P. variotii for their phenolic acids and sterols, assessing antioxidant capacity, anti-inflammatory effects, and anti-proliferative activity. Interestingly, P. variotii mycelia exhibited higher concentrations of ergosterol and phenolic compounds, with comparable levels observed in the fruiting bodies, along with superior antioxidant activity compared to that of C. militaris. In contrast, C. militaris mycelia demonstrated anti-inflammatory effects (which were absent in P. variotii mycelia) and cytotoxicity comparable to, and at times exceeding, that of its fruiting bodies (in contrast to P. variotii). In addition, the species analyzed in this study displayed variations in growth rates and mycelial production, which merit consideration for potential future applications and further study.

Keywords

Acknowledgement

This study was carried out with the support of 'R&D Program for Forest Science Technology (Project No. "2023478B10-2425-BC0361382116530002")' provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Ansar W, Ghosh S. 2016. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. Biology of C Reactive Protein in Health and Disease. 67-107.
  2. Antunes F, Marcal S, Taofiq O, Morais AMMB, Freitas AC, Ferreira ICFR, Pintado M. 2020. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 25: 2672.
  3. Battestin V, Macedo GA, De Freitas VAP. 2008. Hydrolysis of epigallocatechin gallate using a tannase from Paecilomyces variotii. Food Chem 108: 228-233. https://doi.org/10.1016/j.foodchem.2007.10.068
  4. Di W, Zhang L, Yi H, Han X, Zhang Y, Xin L. 2018. Exopolysaccharides produced by Lactobacillus strains suppress HT-29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncol Lett 16: 3577-3586. https://doi.org/10.3892/ol.2018.9129
  5. Gupta S, Summuna B, Gupta M, Annepu SK. 2018. Edible mushrooms: cultivation, bioactive molecules, and health benefits. In J.M. Merillon & K. Ramawat. (ed.), Bioactive Molecules in Food, Reference Series in Phytochemistry, Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_86-1
  6. He BL, Zheng QW, Guo LQ, Huang JY, Yun F, Huang SS, Lin JF. 2020. Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. Int J Biol Macromol 145: 11-20. https://doi.org/10.1016/j.ijbiomac.2019.12.115
  7. Herrera Bravo de Laguna I, Toledo Marante FJ, Mioso R. 2015. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. J Appl Microbiol 119: 1455-1466. https://doi.org/10.1111/jam.12934
  8. Ho CL, Li LH, Weng YC, Hua KF, Ju TC. 2020. Eucalyptus essential oils inhibit the lipopolysaccharide-induced inflammatory response in RAW264. 7 macrophages through reducing MAPK and NF-κB pathways. BMC Complement Med Ther 20: 200.
  9. Huang SJ, Lin CP, Mau JL, Li YS, Tsai SY. 2015. Effect of UV-B irradiation on physiologically active substance content and antioxidant properties of the medicinal caterpillar fungus Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 17: 241-253. https://doi.org/10.1615/IntJMedMushrooms.v17.i3.40
  10. Jin Y, Meng X, Qiu Z, Su Y, Yu P, Qu P. 2018. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi J Biol Sci 25: 991-995. https://doi.org/10.1016/j.sjbs.2018.05.016
  11. Lin JT, Liu CW, Chen YC, Hu CC, Juang LD, Shiesh CC, Yang DJ. 2014. Chemical composition, antioxidant and anti-inflammatory properties for ethanolic extracts from Pleurotus eryngii fruiting bodies harvested at different time. LWT-Food Sci. Technol 55: 374-382. https://doi.org/10.1016/j.lwt.2013.08.023
  12. Liu J, Jia L, Kan J, Jin CH. 2013. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol 51: 310-316. https://doi.org/10.1016/j.fct.2012.10.014
  13. Liu YM, Lai YH, Hsieh FM, Chiu YM, Wasser SP, Mau JL. 2020. Antioxidant activities of selected medicinal mushroom submerged cultivated mycelia. Int J Med Mushrooms 22: 367-377. https://doi.org/10.1615/IntJMedMushrooms.2020034161
  14. Moreno-Gavira A, Dianez F, Sanchez-Montesinos B, Santos M. 2020. Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy 10: 597.
  15. Oppong-Danquah E, Budnicka P, Blumel M, Tasdemir D. 2020. Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals. Mar Drugs 18: 73.
  16. Perez RP, Godwin AK, Handel LM, Hamilton TC. 1993. A comparison of clonogenic, microtetrazolium and sulforhodamine B assays for determination of cisplatin cytotoxicity in human ovarian carcinoma cell lines. Eur J Cancer 29A: 395-399.
  17. Reis FS, Barros L, Calhelha RC, Ciric A, Van Griensven LJ, Sokovic M, Ferreira IC. 2013. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem Toxicol 62: 91-98. https://doi.org/10.1016/j.fct.2013.08.033
  18. Reis FS, Martins A, Barros L, Ferreira IC. 2012. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol 50: 1201-1207. https://doi.org/10.1016/j.fct.2012.02.013
  19. Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira IC. 2017. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Tech 66: 48-62. https://doi.org/10.1016/j.tifs.2017.05.010
  20. Samad NB, Debnath T, Ye M, Hasnat MdA, Lim BO. 2014. In vitro antioxidant and anti-inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pac J Trop Biomed 4: 807-815. https://doi.org/10.12980/APJTB.4.2014C1008
  21. Won SY, Park EH. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 96: 555-561. https://doi.org/10.1016/j.jep.2004.10.009
  22. Wu MY, Lu JH. 2019. Autophagy and macrophage functions: inflammatory response and phagocytosis. Cells 9: 70.
  23. Xiao Y, Xing G, Rui X, Li W, Chen X, Jiang M, Dong M. 2014. Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Funct Foods 10: 210-222. https://doi.org/10.1016/j.jff.2014.06.008
  24. Xiao Y, Zhang B, Chen Y, Miao J, Zhang Q, Rui X, Dong M. 2016. Solid-state bioprocessing with Cordyceps militaris enhanced antioxidant activity and DNA damage protection of red beans (Phaseolus angularis). Cereal Chem 94: 177-184. https://doi.org/10.1094/CCHEM-03-16-0046-R
  25. Yu WQ, Yin F, Shen N, Lin P, Xia B, Li YJ, Guo SD. 2021. Polysaccharide CM1 from Cordyceps militaris hinders adipocyte differentiation and alleviates hyperlipidemia in LDLR (+/-) hamsters. Lipids Health Dis 20: 1-178. https://doi.org/10.1186/s12944-020-01429-x
  26. Zhang J, Wen C, Duan Y, Zhang H, Ma H. 2019. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int J Biol Macromol 132: 906-914. https://doi.org/10.1016/j.ijbiomac.2019.04.020
  27. Zhang K, Wang W, Zhao K, Ma Y, Cheng S, Zhou J, Wu Z. 2020. Producing a novel edible film from mushrooms (L. edodes and F. velutipes) byproducts with a two-stage treatment namely grinding and bleaching. J Food Eng 275: 109862.
  28. Zhong Y, Chiou YS, Pan MH, Shahidi F. 2012. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chem 134: 742-748. https://doi.org/10.1016/j.foodchem.2012.02.172