• Title/Summary/Keyword: Ergonomics evaluation system

Search Result 134, Processing Time 0.029 seconds

Apparel Coordination based on Human Sensibility Ergonomics using Preference of Female Students (여학생의 선호도를 이용한 감성공학적 의상 코디)

  • Cho, Dong-Ju;Han, Kyung-Su;Hwang, Kyung-Hee;Chung, Kyung-Young;Lee, Jung-Hyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.146-150
    • /
    • 2007
  • As the internet has become a mainstream information tool, searching answers has become crucial as well. The collaborative filtering estimates and recommends items based upon the similar preference. However, because it refers to partial users information who have the similar preference, it tends to ignore the rest. In this paper, we propose the apparel coordination based on human sensibility ergonomics using the female students preference. This proposed method calculates evaluation values using fitness function based genetic algorithm, and gathers users through a-cut. Finally, the collaborative filtering recommends apparel coordination. To estimate the performance, the suggested method is compared with FAIMS-I, FAIMS-II in the questionnaire dataset.

  • PDF

A Study on Designing of a Menu Structure for the Instrument Cluster IVIS using Taguchi Method (다구찌 방법을 이용한 Instrument Cluster 상의 IVIS 메뉴 설계에 대한 연구)

  • Hong, Seung-P.;Kim, Seong-M.;Park, Sung-Joon;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The growth of function in vehicle needs complex display and control system, the In-Vehicle Information System(IVIS). Although current IVISs are widely implemented in commercial vehicles, a new form of IVIS has been recently studied in order to reduce drivers' workloads. The purpose of this study is to suggest an appropriate menu structure of a new type IVIS, to be implemented on the instrument cluster panel, using Taguchi's parameter design. In the research, firstly, functions were selected that are appropriate to control through the instrument cluster among existing functions of current IVISs by quantitative evaluation of ergonomic principles. Then, menu structure alternatives were extracted by investigating priorities to those functions selected. Finally, menu structure alternatives were evaluated through an experiment and suggest the most appropriate one by applying Taguchi's parameter design. Taguchi method was used not only for planning an experiment but also evaluating alternatives. SN ratios were a key value to evaluate the alternatives and to find the most proper one. Through the research, the most appropriate menu structure for the instrument cluster IVIS was finally suggested among the alternatives and it is expected that the results of this research could provide a guideline to the instrument cluster IVIS.

IDENTIFICATION AND EVALUATION OF HUMAN FACTORS ISSUES ASSOCIATED WITH EMERGING NUCLEAR PLANT TECHNOLOGY

  • O'Hara, John M.;Higgins, James C.;Brown, William S.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.225-236
    • /
    • 2009
  • This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

Usability Test Analysis on Integrated Automotive Cockpit Module System (자동차 전장 통합 모듈 시스템에서의 사용성 평가)

  • 홍성만;박범
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.237-245
    • /
    • 2003
  • More and more many people show a keen interest in the ergonomics application car. One of the recent trends of cockpit development is to integrate fore part of whole cockpit and compartment. The goal of this study is to develop and Analysis of User's Convenience a cockpit prototype based on the design guide of cockpit integration module. The process of this study has been followed analyzing development trend of next generation Automotive cockpit, extracting the design factor needed to making integration module and laying down the design guide of cockpit integration module. Finally, this study is indicate an instance that evaluation of utilization with Integrated Automotive Cockpit Module System.

  • PDF

Usability Test Analysis for Design on Integrated Automotive Cockpit Module System (자동차 전장 통합 모듈 시스템 설계를 위한 사용성 평가)

  • 홍성만;박범;이성용
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.157-167
    • /
    • 2003
  • More and more many people show a keen interest in the ergonomics application car. One of the recent trends of cockpit development is to integrate fore part of whole cockpit and compartment. The goal of this study is to develop and Analysis of User's Convenience a cockpit prototype based on the design guide of cockpit integration module. The process of this study has been followed analyzing development trend of next generation Automotive cockpit, extracting the design factor needed to making integration module and laying down the design guide of cockpit integration module. Finally, this study is indicate an instance that evaluation of utilization with Integrated Automotive Cockpit Module System.

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

Development and Evaluation of Smart Secondary Controls Using iPad for People with Hemiplegic Disabilities

  • Song, Jeongheon;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-101
    • /
    • 2015
  • Objective: The purpose of this study was to develop and evaluate smart secondary controls using iPad for the drivers with physical disabilities in the driving simulator. Background: The physically disabled drivers face problems in the operation of secondary control devices that accept a control input from a driver for the purpose of operating the subsystems of a motor vehicle. Many of conventional secondary controls consist of small knobs or switches that physically disabled drivers have difficulties in grasping, pulling or twisting. Therefore, their use while driving might increase distraction and workload because of longer operation time. Method: We examined the operation time of conventional and smart secondary controls, such as hazard warning, turn signal, window, windshield wiper, headlights, automatic transmission and horn. The hardware of smart secondary control system was composed of iPad, wireless router, digital input/output module and relay switch. We used the STISim Drive3 software for driving test, customized Labview and Xcode programs for interface control of smart secondary system. Nine subjects were involved in the study for measuring operation time of secondary controls. Results: When the driver was in the stationary condition, the average operation time of smart secondary devices decreased 32.5% in the normal subjects (p <0.01), 47.4% in the subjects with left hemiplegic disabilities (p <0.01) and 38.8% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. When the driver was driving for the test in the simulator, the average operation time of smart secondary devices decreased 36.1% in the normal subjects (p <0.01), 41.7% in the subjects with left hemiplegic disabilities (p <0.01) and 34.1% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. Conclusion: The smart secondary devices using iPad for people with hemiplegic disabilities showed significant reduction of operation time compared with conventional secondary controls. Application: This study can be used to design secondary controls for adaptive vehicles and to improve the quality of life of the people with disabilities.

Ergonomic Evaluation of Trunk-Forearm Support Type Chair

  • Lim, Seung Yeop;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2014
  • Objective: The aim of this study is to investigate the effects of trunk-forearm supported sitting on trunk flexion angle, trunk extensor fatigue and seat contact pressure. Background: The relationship between sitting posture and musculoskeletal disorders of the trunk extensor fatigue and seat contact pressure has been documented. The trunk-forearm support type ergonomic chair was devised from the fact that trunk-forearm support has been reported to reduce trunk extensor activity and discomfort. Method: Using three different sitting postures, upright ($P_1$), trunk-forearm supported ($P_2$) and normal sitting ($P_3$), six healthy subjects participated in the study. Motion capture system was used to collect head and trunk flexion angle, and surface electromyography (sEMG) was used to collect myoelectric signal of upper trapezius, lower trapezius, erector spinae, multifidus, and pressure mat system was used to measure seat contact pressure. Results: When trunk and forearm were supported by the ergonomic chair, higher head flexion angle showed upright > trunk-forearm supported > normal in order, and muscle fatigue showed less than upright and normal sitting. Mean seat contact pressure decreased 19% than upright sitting. But muscle fatigue was not affected by each condition. Conclusion: Trunk-forearm supported sitting of the ergonomic chair showed positive effect in respect of trunk and head flexion angle, trunk extensor fatigue, seat contact pressure. To acquire comprehensive understanding of the effectiveness of the ergonomic chair, further studies such as anatomical effects from measurement of external applied loading effect to the body from interface pressure analysis are required. Application: The results of the publishing trend analysis might help physiological effects of trunk-forearm support type chair.

Measurement and analysis of body pressure distribution on a bed

  • 박세진;황민철;김창범
    • Proceedings of the ESK Conference
    • /
    • 1995.04a
    • /
    • pp.55-61
    • /
    • 1995
  • We spend about 40% of lifte time on a bed and seek how such amount of time is spent comfort. Bed comfort has been pursuited. The pressure distributions on a bed by body pressure has been considered as one of the most important factors of bed comfort. This study is to quantify the subjective assessment by the body pressure distribution and develop the objective evaluation method of bed comfort. A new measurement system for body pressure on a bed was developed in this study. The thin film pressure sensor (FSR: Force Sensing Resistor) of an elastomer-type was used to prevent the distortion of contact pressure. The pressure distribution is measured by FSR and displayed on the monitor by color-coded contour patterns. Some of the bed test results were described. And the relations between body pressure distribution and bed comfort were evaluated.

  • PDF

모호가중점검목록을 이용한 제품의 감성파악에 관한 연구

  • 박경수;정광태
    • Proceedings of the ESK Conference
    • /
    • 1995.04a
    • /
    • pp.25-29
    • /
    • 1995
  • When we design a product, we need to consider human sensibility for the product. In this study, we developed a technique to measure human sensibility for a product. Because human sensibility for a product is very subjective and fuzzy, it is hard to measure easily. To deal with this difficulty effectively, we used fuzzy-weighted checklist to this problem. The fuzzy- weighted checklist presents a fuzzy version of the weighted checklist technique computerized for evaluating or comparing complex system (or subjects). In this technique, we used pairwise comparison to get the relative weights of wensibility factors. Also, we used linguistic ratings to get the scores of sensibility factors for a product. Then, we synthesize the scores of sensi- bility factors to get fuzzy composite score (and linguistic approximation). If there are several alternatives, we can conduct alternative comparison. Finally, we wrote the program of this technique by Quick Basic software. As an example, this technique applied to car. The results show that we can use this technique effectively to the quantitative evaluation of human sensibility

  • PDF