• Title/Summary/Keyword: Equivalent dose of lens area

Search Result 4, Processing Time 0.015 seconds

Comparison of the Equivalent Dose of the Lens Part and the Effective Dose of the Chest in the PET/CT Radiation Workers in the Nuclear Medicine Department (핵의학과 PET/CT실 방사선작업종사자의 수정체 부위의 등가선량과 흉부의 유효선량의 측정 비교)

  • Son, Sang-Joon;Park, Jeong-Kyu;Jung, Dong-Kyung;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.209-215
    • /
    • 2019
  • Comparison of the effective dose of the chest and the equivalent dose of the lens site in the radiation workers working at four medical institutions with the PET / CT room located in one metropolitan city and province from April 1 to June 30, 2018 Respectively. Radioactive medicine were measured at the time of dispensing and at the time of injection. In this experiment, the average dispensing time per patient was 5.7 minutes and the average injection time was 3.1 minutes. The equivalent dose at the lens site was $0.78{\mu}Sv/h$ for 1 mCi, and the effective dose for chest was $0.18{\mu}Sv/h$ per 1 mCi. The equivalent dose at the lens site during injection was $0.88{\mu}Sv/h$ per mCi and the effective dose of chest was $0.20{\mu}Sv/h$ per mCi. The daily effective dose of the chest was $0.9{\pm}0.6{\mu}Sv$ and the equivalent dose of the lens site was $3.6{\pm}1.4{\mu}Sv$ during daily dosing for 20 days. The effective dose of the chest during the day was $0.6{\pm}0.5{\mu}Sv$ and the equivalent dose of the lens was $2.2{\pm}1.0{\mu}Sv$. At the time of dispensing, the equivalent dose of the lens was $0.187{\pm}0.035mSv$, the effective dose of the chest was $0.137{\pm}0.055mSv$, the equivalent dose of the lens was $0.247{\pm}0.057mSv$, and the effective dose of the monthly chest was $0.187{\pm}0.021mSv$. As a result of the corresponding sample test, the equivalent dose and the effective dose of the chest, the effective dose of the chest, the effective dose of the chest, the effective dose of the chest, The equivalent dose of the lens and the effective dose of the chest were statistically significant (p<0.05) with a significance of 0.000. However, there was no statistically significant difference (p>0.05) between the equivalent dose and the effective dose of the chest, the equivalent dose of the lens at the time of injection, and the effective dose of the chest at 0.138 and 0.230, respectively.

Evaluation of Radiation Exposure Dose for Examination Purposes other than the Critical Organ from Computed Tomography: A base on the Dose Reference Level (DRL) (전산화단층촬영에서 촬영 목적 부위와 주변 결정장기에 대한 피폭선량 평가: 선량 권고량 중심으로)

  • Lee, Seoyoung;Kim, Kyunglee;Ha, Hyekyoung;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.121-129
    • /
    • 2013
  • In this study measured patient exposure dose for purpose exposure area and peripheral critical organs by using optically stimulated luminescence dosimeters (OSLDs) from computed tomography (CT), based on the measurement results, we predicted the radiobiological effects, and would like to advised ways of reduction strategies. In order to experiment, OSLDs received calibration factor were attached at left and right lens, thyroid, field center, and sexual gland in human body standard phantom that is recommended in ICRP, and we simulated exposure dose of patients in same condition that equal exposure condition according to examination area. Average calibration factor of OSLDs were $1.0058{\pm}0.0074$. In case of left and right lens, equivalent dose was measure in 50.49 mGy in skull examination, 0.24 mGy in chest, under standard value in abdomen, lumbar spine and pelvis. In case of thyroid, equivalent dose was measured in 10.89 mGy in skull examination, 7.75 mGy in chest, 0.06 mGy in abdomen, under standard value in lumber spine and pelvis. In case of sexual gland, equivalent dose was measured in 21.98 mGy, 2.37 mGy in lumber spine, 6.29 mGy in abdomen, under standard value in skull examination. Reduction strategies about diagnosis reference level (DRL) in CT examination needed fair interpretation and institutional support recommending international organization. So, we met validity for minimize exposure of patients, systematize influence about exposure dose of patients and minimize unnecessary exposure of tissue.

Effect of Reducing Scattering Radiation Exposure of Medical Staffs When Additional Shielding is Used in Interventional Radiology (중재적 방사선시술에서 부가 차폐체 사용 시 종사자의 산란선 피폭 감소효과)

  • Kim, Min-Jun;Baek, Kang-Nam;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.629-633
    • /
    • 2021
  • This article is designed to look into the radiation exposure dose to each body part and the shielding effect for workers using an additional shielding to reduce their radiation exposured by scattering radiation which is generated in a space between the operating table and lead curtain during interventional radiology(IR) procedures. After placing a human phantom on the table of SIEMENS' angiography machine, the following measurements were taken, depending on the presence of an additional shield of lead equivalent of 0.25 mmPb, manufactured for this purpose: dose to gonad, dose to an area where the personal dosimeter is placed, and dose to an area of eye lens is located. An ion chamber(chamber volume 1,800 cc) was utilized to measure scattering radiation. The two imaging tests were carried out as follows: fluoroscopy of the abdomen (66 kV, 100 mA, 60 seconds) and of the head (70 kV, 65 mA, 60 seconds); and digital subtraction angiography(DSA) of the abdomen (67 kV, 264 mA, 20 seconds) and of the head (79 kV, 300 mA, 20 seconds). In all the experiments, the shielding efficiency of the gonad position was the largest at 59.8%. In case an additional shielding was used as protection against scattering radiation that came through the operating table and the lead curtain during an IR, the radiation shielding efficiency was estimated to be up to 59.8%, leading to a conclusion that its presence may effectively reduce the radiation exposure dose of medical staffs.

Absorbed Doses in Organs of the Head and Neck from Conventional Temporomandibular Joint Tomography (악관절 단층촬영시의 두경부 주요 기관의 흡수선량)

  • Cho Bong-Hae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.411-416
    • /
    • 1999
  • Purpose : This study was done to evaluate the absorbed doses in organs of the head and neck for the conventional temporomandibular joint tomography. Materials and Methods : Dosimetry was performed with 32 LiF thermoluminescent dosimeters, which were placed in a tissue-equivalent phantom when the temporomandibular joint was examined by both lateral and frontal temporomandibular joint tomography. Results : For lateral tomography, parotid gland and preauricular area towards tube showed relatively high absorbed dose of 1056.9 μGy and 519.9 μGy respectively. For frontal tomography, the two largest absorbed doses were 259.2 μGy in orbit towards tube and 212.0 μGy in lens towards tube. Conclusion : Conventional temporomandibular joint tomography showed relatively low absorbed doses on critical organs. Thus, responsible use of it may not be limited.

  • PDF