• Title/Summary/Keyword: Equivalent Time Constant

Search Result 124, Processing Time 0.02 seconds

Early Detection of Peripheral Intravenous Infiltration Using Segmental Bioelectrical Impedance: Preliminary Study

  • Kim, Jaehyung;Jeong, Ihnsook;Baik, Seungwan;Jeon, Gyerok
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.482-490
    • /
    • 2017
  • Early detection of infiltration is one of the most important tasks of nurses to minimize skin damage due to infiltration. For subjects receiving invasive intravenous treatment, the bioelectrical impedance (impedance) were measured in the frequency range of 5 to 500 kHz using bioelectrical impedance spectroscopy (BIS). After attaching electrodes at both ends of a transparent dressing mounted on the skin in which IV solution was infused into the vein, the change in impedance was measured as a function of time and frequency before and after infiltration. The experimental results are described as follows. When IV solution was properly infused into the vein, the impedance was nearly constant over time and decreased with increasing frequency. However, when infiltration occurred, the impedance decreased significantly and thereafter gradually decreased with time. In addition, impedance decreased with time for all applied frequencies. In this study, when IV solution penetrated into the surrounding skin and subcutaneous tissue by infiltration, impedance was quantitatively analyzed for as a function of time and frequency. This suggests a method for early detection of infiltration using BIS.

Distribution and evolution of residual voids in longwall old goaf

  • Wang, Changxiang;Jiang, Ning;Shen, Baotang;Sun, Xizhen;Zhang, Buchu;Lu, Yao;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2019
  • In this paper, simulation tests were conducted with similar materials to study the distribution of residual voids in longwall goaf. Short-time step loading was used to simulate the obvious deformation period in the later stage of arch breeding. Long-time constant loading was used to simulate the rheological stage of the arch forming. The results show that the irregular caving zone is the key area of old goaf for the subsidence control. The evolution process of the stress arch and fracture arch in stope can be divided into two stages: arch breeding stage and arch forming stage. In the arch breeding stage, broken rocks are initially caved and accumulated in the goaf, followed by the step deformation. Arch forming stage is the rheological deformation period of broken rocks. In addition, under the certain loads, the broken rock mass undergoes single sliding deformation and composite crushing deformation. The void of broken rock mass decreases gradually in short-time step loading stage. Under the water lubrication, a secondary sliding deformation occurs, leading to the acceleration of the broken rock mass deformation. Based on above research, the concept of equivalent height of residual voids was proposed, and whose calculation equations were developed. Finally, the conceptual model was verified by the field measurement data.

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

Creep and Rupture Life of Al 7075 alloy under step-wise temperature cycling (온도 변동하의 A1 7075 합금의 크리이프 및 파단수명)

  • Kim, Chang-Gun;Kang, Dae-Min;Gu, Yang;Park, Kyung-Dong;Baek, Nam-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.25-39
    • /
    • 1989
  • Cyclic temperature creep tests were carried out an AS 7075 alloy specimens were subjected to a constant load and stepwise temperature cycles in which temperature was fluctuated between 30$0^{\circ}C$ and 25$0^{\circ}C$ with three different cycle ratios. The highest frequency of cycling was 1 cycle per 10 hr and the lowest one was 1 cycle per 12 hr. From the creep experimental results with the above conditions the creep strain under cyclic temperature can be predicted easily by introd ucing the equivalent steady temperature because defined by Eq.(16), but the rupture life is 1.1 time than those of constant temperature because of effect of temperature history at tertiary creep range. Besides thlis result, the results of the creep test under cyclic temperature conditions are respectively compayiea with calculated rupture lives using the life fraction law and Eq.(18). The agreement between the obseried rupture times and calculated ones is fairly good. So creep rupture lives can be respectively predicted using life fraction law and Eq.(18).

  • PDF

Time-domain Finite Element Formulation for Linear Viscoelastic Analysis Based on a Hereditary Type Constitutive Law (유전적분형 물성방정식에 근거한 선형 점탄성문제의 시간영역 유한요소해석)

  • 심우진;이호섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1429-1437
    • /
    • 1992
  • A new finite element formulation based on the relaxation type hereditary integral is presented for a time-domain analysis of isotropic, linear viscoelastic problems. The semi-discrete variational approximation and elastic-viscoelastic correspondence principle are used in the theoretical development of the proposed method. In a time-stepping procedure of final, linear algebraic system equations, only a small additional computation for past history is required since the equivalent stiffness matrix is constant. The viscoelasticity matrices are derived and the stress computation algorithm is given in matrix form. The effect of time increment and Gauss point numbers on the numerical accuracy is examined. Two dimensional numerical examples of plane strain and plane stress are solved and compared with the analytical solutions to demonstrate the versatility and accuracy of the present method.

Spectral Induced Polarization Response Charaterization of Pb-Zn Ore Bodies at the Gagok mine (가곡광산 연-아연 광체의 광대역유도분극 반응 특성)

  • Shin, Seungwook;Park, Samgyu;Shin, Dongbok
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.247-252
    • /
    • 2014
  • Gagok Mine, which is skarn deposits, includes sulfide minerals such as sphalerite, galena, chalcopyrite, and pyrrhotite. To explore these minerals, spectral induced polarization (SIP) is relatively effective compared to other geophysical exploration methods because there is a strong IP effect caused by electrode polarization. In the SIP, the chargeability related to sulfide mineral contents and the time constant related to the grain size of the minerals are obtained. For this reason, we aim to compare difference in the mineralized characteristics between two orebodies in the Gagok Mine by using the chargeability and the time constant. For this study, we sampled ores from the south of Wolgok orebody and the north of Sungok orebody. In order to recognize the mineralization characteristics, the metal content of the samples was measured by a potable XRF and the SIP data of the samples were acquired by using a laboratory SIP measurement system. As a result, the metals in the samples such as Pb, Zn, Cu, and Fe were detected by the portable XRF measurement. In particular, the Fe and Zn contents were far higher than the other metals. The Fe and the Zn were caused by the sphalerite and the pyrrhotite through microscopy. The Wolgok orebody had higher sulfide mineral contents than the Sungok orebody and the result corresponded with the chargeability result. However, we considered that the Sungok orebody had a larger sulfide mineral grain size than the Wolgok orebody because the time constant of the Sungok orebody was larger.

Analysis of a transmission line on Si-based lossy structure using Finite-Difference Time-Domain(FDTD) method (손실있는 실리콘 반도체위에 제작된 전송선로의 유한차분법을 이용한 해석)

  • 김윤석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1527-1533
    • /
    • 2000
  • Basically, a general characterization procedure based on the extraction of the characteristic impedance and propagation constant for analyzing a single MIS(Metal-Insulator-Semiconductor) transmission line is used. In this paper, an analysis for a new substrate shielding MIS structure consisting of grounded cross-bars at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded cross bar lines over time-domain signal has been examined. The extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor have been examined as functions of cross-bar spacing and frequency. It is shown that the quality factor of the transmission line can be improved without significant change in the characteristic impedance and effectve dielectric constant.

  • PDF

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.

The analysis and optimization of dual armor plate considering EQPS (EQPS를 이용한 복합장갑의 해석 및 최적설계)

  • 박명수;유정훈;정동택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

A Study on the Electrical Circuit Model of the Electrode/Electrolyte Interface for Improving Electrochemical Impedance Fitting (전기화학적 임피던스 Fitting 개선을 위한 전극/전해질 계면의 전기회로 모델 연구)

  • Chang, Jong-Hyeon;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1087-1091
    • /
    • 2007
  • Exact impedance modeling of the electrode/electrolyte interface is important in bio-signal sensing electrode development. Therefore, the investigation of the equivalent circuit models for the interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. The proposed model consists of three resistors and two constant phase elements. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.