• Title/Summary/Keyword: Equivalent Source

Search Result 576, Processing Time 0.214 seconds

Equivalent RMS Sine-wave Modulation of the Step-pulse type Multi-level Inverter (스텝펄스형 멀티레벨 인버터를 위한 RMS 등가형의 새로운 사인파 변조법)

  • Jin, Sun-Ho;Kwak, Jun-Ho;Jo, Kwan-Jun;Oh, Jin-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.239-246
    • /
    • 2006
  • This paper suggests a new modulation strategy for step pulse type multi-level inverter. The proposed strategy is simple to determine the switching angles without regard to increase of levels. Designed to extract the equivalent RMS value compared to ideal sine wave from inverter, it can be applied effectively to high level step pulse inverter. Also this paper proposed modulation strategy for modified H-bridge 13 level inverter which has different cell source voltages with simulation and experiment. The modulation characteristics from simulation and experiment, agreed very well with tracing sine wave about modified structure of cascaded H-bridge multi-level inverter.

A Two-dimensional Steady State Simulation Study on the Radio Frequency Inductively Coupled Argon Plasma

  • Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.246-252
    • /
    • 2002
  • Two-dimensional steady state simulations of planar type radio frequency inductively coupled plasma (RFICP) have been performed. The characteristics of RFICP were investigated in terms of power transfer efficiency, equivalent circuit analysis, spatial distribution of plasma density and electron temperature. Plasma density and electron temperature were determined from the equations of ambipolar diffusion and energy conservation. Joule heating, ionization, excitation and elastic collision loss were included as the source terms of the electron energy equation. The electromagnetic field was calculated from the vector potential formulation of ampere's law. The peak electron temperature decreases from about 4eV to 2eV as pressure increases from 5 mTorr to 100 mTorr. The peak density increases with increasing pressure. Electron temperatures at the center of the chamber are almost independent of input power and electron densities linearly increase with power level. The results agree well with theoretical analysis and experimental results. A single turn, edge feeding antenna configuration shows better density uniformity than a four-turn antenna system at relatively low pressure conditions. The thickness of the dielectric window should be minimized to reduce power loss. The equivalent resistance of the system increases with both power and pressure, which reflects the improvement of power transfer efficiency.

Analysis of HVDC Inverter and Application of Objective Functions for the Optimal Filter Design (직류송전 인버터의 필터 최적설계를 위한 해석 및 목적함수의 선정)

  • 오성철;정교범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.82-89
    • /
    • 2001
  • This paper proposes several methods to analyze dynamic and static characteristics of HVDC inverter system. The characteristic analysis is essential of the controller and filter design of the HVDC inverter system. Dynamic characteristic can be analyzed with EMTP simulation and static characteristic can be obtained by solving newly proposed load flow equation which includes the filter and load characteristic. New simple per-phase-equivalent circuit is also proposed. In this circuit, HVDC inverter is considered as a current source depending on the on-off status of switch. Dynamic and static characteristic can be analyzed by the proposed per-phase-equivalent circuit. For the optimal filter design, various performance criteria are proposed. The performance index, based on the per-phase-equivalent circuit, is calculated. Voltage harmonics and filter power loss are selected as criteria. Optimization procedure is explained to find optimal passive filter parameters.

  • PDF

A Study of Dynamic Characteristic Analysis for Hysteresis Motor Using Permeability and Load Angle by Inverse Preisach Model (역 프라이자흐 모델에 의한 투자율과 부하각을 이용한 히스테리시스 전동기의 동적 특성 해석 연구)

  • Kim, Hyeong-Seop;Han, Ji-Hoon;Choi, Dong-Jin;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.262-268
    • /
    • 2019
  • Previous dynamic models of hysteresis motor use an extended induction machine equivalent circuit or somewhat different equivalent circuit with conventional one, which makes unsatisfiable results. In this paper, the hysteresis dynamic characteristics of the motor rotor are analyzed using the inverse Preisach model and the hysteresis motor equivalent circuit considering eddy current effect. The hysteresis loop for the rotor ring is analyzed under full-load voltage source static state. The calculated hysteresis loop is then approximated to an ellipse for simplicity of dynamic computation. The permeability and delay angle of the elliptic loop apply to the dynamic analysis model. As a result, it is possible to dynamically analyze the hysteresis motor according to the applied voltage and the rotor material. With this method, the motor speed, generated torque, load angle, rotor current as well as synchronous entry time, hunting effect can be calculated.

Common Model EMI Prediction in Motor Drive System for Electric Vehicle Application

  • Yang, Yong-Ming;Peng, He-Meng;Wang, Quan-Di
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2015
  • Common mode (CM) conducted interference are predicted and compared with experiments in a motor drive system of Electric vehicles in this study. The prediction model considers each part as an equivalent circuit model which is represented by lumped parameters and proposes the parameter extraction method. For the modeling of the inverter, a concentrated and equivalent method is used to process synthetically the CM interference source and the stray capacitance. For the parameter extraction in the power line model, a computation method that combines analytical method and finite element method is used. The modeling of the motor is based on measured date of the impedance and vector fitting technique. It is shown that the parasitic currents and interference voltage in the system can be simulated in the different parts of the prediction model in the conducted frequency range (150 kHz-30 MHz). Experiments have successfully confirmed that the approach is effective.

Experimental Study to Improve the Performance and Emission of CNG Dual Fuel Diesel Engine Mixed with Hydrogen (CNG Dual Fuel 디젤기관의 성능과 배출가스 개선을 위한 수소혼합 실험)

  • ;Masahiri Shioji
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • In this study, the performance and pollutant emission of CNG engine using diesel oil as a source of ignition, so called CNG dual fuel diesel engine is considered by experiment. One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of total hydrocarbon (THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. and when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the knocking limit decrease and the produce of NOx increases.

  • PDF

Sound Power Evaluation of Various Domestic Railroad Vehicles (국내 철도 차량의 음향발생 특성에 대한 비교 연구)

  • Kim, Jeung-Tae;Cho, Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.28-37
    • /
    • 1999
  • Many residential areas are situated near to railroad tracks so that a railroad noise has been one of the major environmental issues. In this paper two important aspects have been investigated in order to properly evaluate the railroad vehicle noise : sound power levels for different types and sound propagation characteristics of the railroad vehicles. For noise source characteristics of railroad vehicles, sound power values for various types of trains that are in active service have been measured. In this paper, domestic railroad vehicles are measured and compared with high speed train(TGV). Based on sound power information of railway vehicles, prediction on the sound pressure level and equivalent noise level near to railway areas have been evaluated.

  • PDF

Development of Electrical and Oil Heater for Energy Saving (에너지 절감형 전기 유류 겸용 온풍기 개발)

  • Chung, Sung-Won;Kim, Dong-Keon;Gong, Sang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.38-43
    • /
    • 2011
  • This study was carried out to evaluate the structural stability of hybrid type fan heater. The evaluation of structural safety of hybrid fan heater was conducted by using Ansys Workbench and CFX-11 under the design condition. The hybrid fan heater was operated by heat transfer for heat source supplied from electric heater and combustion gas. According to result of structural analysis, the maximum equivalent stress of hybrid fan heater was 150MPa when the temperature of heat transfer fluids was $150^{\circ}C$. It was found that the hybrid fan was structurally safe because the value of maximum equivalent stress was smaller than that of yield stress of the material.

IR signature modeling using an equivalent thermal circuit (등가 열회로를 이용한 물체의 적외선 특성 모델링)

  • 홍현기;한성현;홍경표;최종수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.122-129
    • /
    • 1998
  • For generation and analysis of the multi-sensory image, we propose a new three dimensional (3D) modeling method considering an iternal heat source. We represent the heat conduction process within th object as an equivalent thermal circuit. Therefore, without a complex computation, our modeling approach can obtain thermal features of the object. By using the faceted model, the proposed method can express the accurate visual signatures of the object. Comparing the estimates datum with the obtained surface temperatures, we have demonstrated that the proposed method can provide a precise thermal features. The thermal images by out model is applicable to simulate a tracking loop of an IR missile.

  • PDF

Equivelent Circuit of Leakage Transformer using coupling Coefficient K (종합계수 K에 의한 누설변압기의 등가회로)

  • 이광직;공휘식;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.3
    • /
    • pp.50-56
    • /
    • 1992
  • The coupling coefficient K controls the characteristic behaviors of leakage transformer. The value of coupling coefficient K was obtained from th leakage flux of leakage transformer an ascertained from the variation due to the function of current. Therefore, this paper presented the equivalent circuit of leakage transformer consisting of Thevenin's constant voltage source and inductor as (1-K2)L2 which were proportional to parameter K. The proposed equivalent circuit verified the validity in designing the leakage transformer because it was in good agreements of the behaviors of ideal transformer (K is 1), leakage transformer (K is 0$\leq$K$\leq$1), inductor (K is 0).

  • PDF