• 제목/요약/키워드: Equivalent R-C circuit

Search Result 68, Processing Time 0.026 seconds

Research on R-C Distributed Circuits (R-C 분포회로에 관한 연구)

  • 박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.3 no.2
    • /
    • pp.10-17
    • /
    • 1966
  • A method by which solutions of the differential equations of any other distributed circuits can be obtained is described when the solution of the differential equation of an R-C distributed amplifier is known. A graphical method of transforming any R-C ditributed circuit into an equivalent circuit which has a constant R(x)$cdot$C(x) was also obtained. The theoretical verification of this method is possible. For simplicity, any R-C distributed circuit can be transformed into an equivalent circuit which is a distributed circuit of either constant R(x) or C(x). Using this equivalent circuit and considering a lumped circuit, an approximate analysis and synthesis can be made simply.

  • PDF

Equivalent-Circuit Analysis of Organic Light-Emitting Diodes in $ITO/TPD/Alq_3/Al$ ($ITO/TPD/Alq_3/Al$ 유기발광소자의 등가회로 분석)

  • Ahn, Joon-Ho;Oh, Yong-Chul;Hong, Jin-Woong;Lee, Joon-Ung;Song, Min-Jong;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.188-191
    • /
    • 2004
  • We have investigated equivalent-circuit analysis of organic light-emitting diodes in $ITO/TPD/Alq_3/Al$. Complex impedance Z of the device was measured in the frequency range of $40Hz{\sim}1MHz$. We are able to interpret the frequency-dependent response in terms of equivalent-circuit model of contact resistance $R_s$ in series with two parallel combination of $R_{TPD},\;C_{TPD}\;and\;R_{Alq3},\;C_{Alq3}$.

  • PDF

New High-Frequency Equivalent Circuit Model for QFP Package (QFP 패키지의 새로운 고주파 등가 회로 모델)

  • Kim Sung-Jong;Song Sang-Hun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.339-342
    • /
    • 2005
  • We present a new high-frequency equivalent circuit model for 52pin QFP used in typical IC's and extract R, L, and C values of this circuit model using a 3-D E & M field simulator. Futhermore, L and C value variations as a function of Pin number due to the shape differences of the leads have been fitted to 2nd order polynomials in order to extend the applicability of this model.

Equivalent-circuit Analysis of ITO/Alq3/Al Organic Light-emitting Diode

  • Chung, Dong-Hoe;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.131-134
    • /
    • 2007
  • An $ITO/Alq_3/Al$ structure was used to study complex impedance of $Alq_3$ based organic light-emitting diodes. Equivalent circuit was analyzed in a device structure of $ITO/Alq_3/Al$ with a thickness layer of $Alq_3$ of 100 nm. The obtained impedance was able to be fitted using equivalent circuit model of parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance of $R_s$.

Modeling Interconnect Wiring using the Partial Element Equivalent Circuit Approach in Time Domain (부분요소 등가회로를 이용한 시간영역에서의 인터커넥트 모델링 연구)

  • Park, Seol-Cheon;Yun, Seok-In;Won, Tae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • In this Paper, we discuss the PEEC method and construct the PEEC equivalent circuit of the test structure and construct the system matrix, which was simulated by numerical analysis. And we got node voltages and currents. Constructing the equivalent circuit, we extracted the parasitic parameter(R, L, C)using the simulator, which is based on finite element method, hence we could simulate the transient analysis.

Output Signal Analysis for Variation of Resistance Passive Element in the R-L-C Equivalent Circuit Modeling under Temperature Accident Conditions in NPPs (원전 온도 사고 조건에서 R-L-C회로 모델링 등가 회로의 저항 수동 소자 변화에 대한 출력 신호 분석)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hee-Dong;Cho, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.600-602
    • /
    • 2006
  • Some abnormal signals diagnostics and analysis through an important equivalent circuits modeling for passive elements under severe accident conditions have been performed. Unlike the design basis accidents, there are inherently some uncertainties in the instrumentation capabilities under the accident conditions. So, the circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings as an accident alternative method. The simulations can be useful to investigate what the signal and circuit characteristics would be when similar to a variety of symptoms that can result from the environmental conditions such as high temperature, humidity, and pressure condition. In this paper, a new simulator through an analysis of the important equivalent circuits modeling under temperature accident conditions has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of the Multi-SIM code as an engine tool is exported to in-put file of the LabVIEW code. The procedure for the simulator design was divided into two design steps, of which the first step was the diagnosis method, the second step was the circuit simulator for the signal processing tool. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. This simulator should be possible that it could be applied a output signal analysis to some transient signal by variation of the resistance passive elements in the R-L-C equivalent circuit modeling under various degraded conditions in NPPs.

  • PDF

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

Electrical Conduction Mechanism and Equivalent Circuit Analysis in $Alq_3$ based Organic Light Emitting Diode ($Alq_3$에 기초한 유기 발광 소자에서 전기전도특성과 등가회로분석)

  • Chung, Dong-Hoe;Shin, Cheol-Gi;Lee, Dong-Gyu;Lee, Joon-Ung;Lee, Suk-Jae;Lee, Won-Jae;Jang, Kyung-Wook;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.103-106
    • /
    • 2004
  • We have studied a conduction mechanism and equivalent circuit analysis in $Alq_3$ based Organic Light Emitting Diode. The conduction mechanism in organic light emitting diode can be classified into three regions; ohmic region, space-charge-limited current (SCLC) region and trap-charge-limited current (TCLC) region depending on the region of applied voltage. Equivalent circuit model of organic light emitting diode can be established using a parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance $R_s$.

  • PDF

Experimental Investigation of Size Dependent Electrical Parameters of Tuning Fork Crystal Oscillators (소리굽쇠 수정발진기의 크기에 따른 전기적인 특성변화에 대한 실험적 연구)

  • Song, Sang-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2416-2419
    • /
    • 2009
  • We performed frequency response measurements of four tuning fork crystal oscillators with different sizes and analyzed their measured electrical equivalent circuit parameters of R, L, $C_S$, and $C_P$ as functions of the linear dimensions, length, width, and thickness. We observed that R and L showed an decreasing behavior with increasing length while $C_S$, and $C_P$ showed an increasing behavior. Similar dependences of the electrical parameters on thickness were also observed. On the contrary, any noticeable dependence of these parameters on width has not been found.

Property analysis of multi layer Organic Light Emitting Diodes using equivalent circuit models (등가 회로 모델을 이용한 다층 유기발광 소자의 특성 분석)

  • Park, Hyung-Jun;Kim, Hyun-Min;Yi, Jun-Sin;Nam, Eun-Kyoung;Jung, Dong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.119-120
    • /
    • 2006
  • The impedance spectroscopy is one of the effective ways to understand the electrical properties of organic light emitting diodes. The frequency-dependant properties of small molecule based OLEDs have been studied. The equivalent circuit of single-layer device is composed of contact resistance ($R_c$), bulk resistance ($R_p$) and bulk capacitance ($C_p$). The equivalent circuit of double layer device is composed of two parallel circuits connected in series, each of which is a parallel resistor and a capacitor. We have fabricated a double layer device indium-rio-oxide (ITO, anode), N,NV -diphenyl- N,NV -bis(3-methylphenyI)-1,1V -diphenyl-4,4V-diamine (TPD, hole-transporting layer), tris-(8-hydroxyquinoline) aluminum (Alq3, emitting layer), and aluminum (AI, cathode) and two single layer devices ([TO/ Alq3/ AI, ITO/TPD/AI).

  • PDF