• Title/Summary/Keyword: Equivalent Material

Search Result 1,111, Processing Time 0.034 seconds

EQUIVALENT MATERIAL PROPERTIES OF PERFORATED PLATE WITH TRIANGULAR OR SQUARE PENETRATION PATTERN FOR DYNAMIC ANALYSIS

  • Jhung, Myung-Jo;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.689-696
    • /
    • 2006
  • For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a modal analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Modal characteristics of partially perforated rectangular plate with triangular penetration pattern

  • Jhung, Myung J.;Jeong, Kyeong H.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.583-603
    • /
    • 2015
  • There are so many applications of perforated pates with various penetration patterns. If they are penetrated regularly, it can be represented by solid plate with equivalent material properties, which has a benefit of finite element modelling and reducing computation time for the analysis. Because the equivalent material properties suggested already are not proper to be applicable for the dynamic analysis, it is necessary to extract the equivalent material properties for the dynamic analysis. Therefore, in this study, the equivalent modulus of elasticity are obtained for the perforated plate with a triangular penetration pattern by comparing the natural frequencies of the perforated plate with those of solid plate, which are represented with respect to the ligament efficacy. Using the equivalent material properties suggested, the modal analyses of the partially perforated rectangular plate with a triangular penetration pattern are performed and its applicability is shown by comparing natural frequencies of perforated and homogeneous solid plates from finite element method and analytical method.

An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate (알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계)

  • 장창두;하윤석;조영천;신광복
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.

Assessment of Equivalent Elastic Modulus of Perforated Spherical Plates

  • JUMA, Collins;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Perforated plates are used for the steam generator tube-sheet and the Reactor Vessel Closure Head in the Nuclear Power Plant. The ASME code, Section III Appendix A-8000, addresses the analysis of perforated plates, however, this analysis is only limited to the flat plate with a triangular perforation pattern. Based on the concept of the effective elastic constants, simulation of flat and spherical perforated plates and their equivalent solid plates were carried out using Finite Element Analysis (FEA). The isotropic material properties of the perforated plate were replaced with anisotropic material properties of the equivalent solid plate and subjected to the same loading conditions. The generated curves of effective elastic constants vs ligament efficiency for the flat perforated plate were in agreement with the design curve provided by ASME code. With this result, a plate with spherical curvature having perforations can be conveniently analyzed with equivalent elastic modulus and equivalent Poisson's ratio.

Derivation of Equivalent Material Properties of Induction Motor Windings Based on Homogenization Method (균질화기법에 기초한 유도전동기 권선 다발의 등가물성 유도)

  • Bae Jing-Do;Ko Woo-Sik;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.518-525
    • /
    • 2005
  • The electromagnetic noise generates when natural frequencies of a stator core with wingdings and frame coincide with or approach natural frequencies of the magnetic motive force. In order to suppress such noise, the estimation of natural frequencies of the motor is important at the design stage. However, the natural frequency analysis is not so easy because motor stator is in the laminated plate structure and windings are composed of wires, insulation sheets and vanishs. Thus the accurate prediction of the equivalent material properties of windings becomes an essential task. In this paper, we derive the equivalent material properties using homogenization methods.

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency (ME 소자의 저주파 등가회로 모델링)

  • Chung, Su-Tae;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

Study on the Tracking Characteristics Depending on Accelerated Degradation of PVC Insulation Material (PVC 절연재료의 가속열화에 따른 트래킹 특성에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.91-98
    • /
    • 2017
  • The present paper is a study on the tracking characteristics depending on accelerated degradation of PVC insulation material. In order to insulation degradation of PVC insulation material, the Arrhenius equation, a type of accelerated degradation test formula, was used to conduct accelerated degradation experiments with experiment samples prepared at the following age equivalents: 0, 10, 20, 30 and 40 years. Afterwards, a tracking experiment was conducted on the accelerated experiment samples as part of the KS C IEC 60112 criteria. When measuring the PVC tracking features according to the accelerated aging, the results showed that when 0.1% of ammonium chloride was added to the PVC insulating material, but no tracking occurred. However, depending on the age equivalent, The results of analyzing the current waveform and voltage waveform of the tracking propagation process showed the age equivalent from 0 years to 40 years displayed a break down in insulation resistance and even the BDB(before dielectric breakdown) sections did not maintain the same functionality of the original material. Based on a criterion of an age equivalent of 0 years, material with an age equivalent of 10 years posed a 1.4 times greater risk, material with an age equivalent of 20 years posed a 2 times greater risk, material with an age equivalent of 30 years posed a 4.6 times greater risk, and material with an age equivalent of 40 years posed a 7 times greater risk.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF