• Title/Summary/Keyword: Equivalent Load

Search Result 1,188, Processing Time 0.027 seconds

Mechanical behavior investigation of steel connections using a modified component method

  • Chen, Shizhe;Pan, Jianrong;Yuan, Hui;Xie, Zhuangning;Wang, Zhan;Dong, Xian
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.117-126
    • /
    • 2017
  • The component method is an analytical approach for investigating the moment-rotation relationship of steel connections. In this study, the component method was improved from two aspects: (i) load analysis of mechanical model; and (ii) combination of spring elements. An optimized component method with more reasonable component models, spring arrangement position, and boundary conditions was developed using finite element analysis. An experimental testing program in two major-axis and two minor-axis connections under symmetrically loading was carried out to verify this method. The initial rotational stiffness obtained from the optimized component method was consistent with the experimental results. It can be concluded that (i) The coupling stiffness between column and beam flanges significantly affects the effective height of the tensile-column web. (ii) The mechanical properties of the bending components were obtained using an equivalent t-stub model considering the bending capacity of bolts. (iii) Using the optimized mechanical components, the initial rotational stiffness was accurately calculated using the spring system. (iv) The characteristics of moment-rotation relationship for beam to column connections were effectively expressed by the SPRING element analysis model using ABAQUS. The calculations are simpler, and the results are accurate.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

A Study on the Discharge Characteristics of an Ac PDP with the Variation of Scan Electrode Driver (PDP 스캔 전극 구동방식에 따른 방전 특성의 변화에 관한 연구)

  • Kim, Joong-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.13-18
    • /
    • 2005
  • The variation of discharge characteristics of an ac PDP was observed with the charge of scan electrode driving circuit. Conventional scan electrode driving circuit provides two switches per one scan line, and the suggested one can be constituted by one switch per one scan line with the consideration of capacitive load characteristic of an ac PDP. To verify the workability of the suggested scheme, the performances of the ac PDP was investigated. The dynamic voltage margin was slightly decreased with the adoption of the suggested scheme, which is estimated to result from the misfiring of unselected discharge cells due to the deformation of voltage level of the neighboring scan electrode. In the observation of the delay characteristics of addressing discharge, the performances of the conventional circuit and the suggested one are assumed to be equivalent.

Methodology for Benefit Evaluation according to Maintenance Method and Timing of National Highway Pavement Section (국도포장 유지보수 공법 및 시기에 따른 편익산정 방안)

  • Do, Myungsik;Kwon, Soo Ahn;Choi, Seunghyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.91-99
    • /
    • 2013
  • PURPOSES : This study aims at proposing the methodology for benefit evaluations in pavement maintenance methods and timings using KoPMS(Korean Pavement Management System) software which was developed for efficient pavement management. METHODS : This study classified pavement sections into 4 clusters considering AADT(Annual Average Daily Traffic) and ESAL(Equivalent Single-Axle Load) using cluster analysis and used the deterioration models in each cluster. Increased user costs due to pavement deterioration as time goes by and agent costs for maintenance were estimated. Based on deterioration model and KoPMS software, Methodology for benefit evaluation was proposed in pavement maintenance methods and with/without implementation using real pavement section data. RESULTS : This study verified that considering agent costs only would be constrained to decide pavement maintenance methods and timings, and ascertained that decision making with agent and user costs would be effective. In addition, this study revealed that pavement maintenance methods and timings can be affected by AADT and ESAL and frequent pavement maintenances can be more efficient for benefits in pavement sections with more AADT and ESAL. Also this study found that user costs would be more affected to decision making than agent costs. Moreover, Delay of conducting pavement maintenance caused increased vehicle operating costs and environmental costs because of poor conditions of pavements. CONCLUSIONS : This study proposed LCCA and benefit estimation methodology of pavement with considering agent and user costs. The results of this study can be used for baseline data of efficient pavement asset management.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications (자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구)

  • Choi, Chul Young;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

Seismic response of underwater fluid-conveying concrete pipes reinforced with SiO2 nanoparticles using DQ and Newmark methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.717-726
    • /
    • 2018
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that $SiO_2$ nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as $SiO_2$ nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of $SiO_2$ nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Convergence Study on Durability Analysis of Scooter Seat (스쿠터 시트의 내구성 해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.165-170
    • /
    • 2019
  • This study carried out the structural analysis and vibration analysis on scooter seat. By comparing with three kinds of B-bone A, Julio B, and City Ace C, the load was applied to scooter seat as much as a weight of person. Through structural analysis, this study examined which seat is most deformed by comparing the deformation each other or affords passengers most convenience and does not afford passengers the inconvenience by absorbing the vibration during driving. Model C has the most total deformation at the structural analysis result and Model B is seen to be changed to be convenient to sit the deformation as it deforms largely. Through this study, which seat is most convenient and becomes strong on durability can be confirmed. As the durability analysis result data of scooter seat model obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.