• Title/Summary/Keyword: Equivalent Dose

Search Result 534, Processing Time 0.03 seconds

A absorbed and effective dose from the full-mouth periapical radiography using portable dental x-ray machine and panoramic radiography (ORIGINAL ARTICLE - 이동형 구내방사선촬영기로 촬영한 치근단 방사선촬영과 파노라마방사선촬영의 흡수선량과 유효선량 평가)

  • Han, Won-Jeong
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.420-430
    • /
    • 2012
  • Purpose: The purpose of this study was to measure the absorbed dose and to calculate the effective dose for full-mouth periapical radiography using the portable dental x-ray machine and panoramic radiography Material and Method: Thermoluminescent chips were placed at 25sites throughout the layers of the head and neck of a tissue-equivalent human skull phantom. The man phantom was exposed with the portable dental x-ray machine and panoramic unit. During full-mouth periapical radiography the exposure setting was 60 kVp, 2 mA and 0.15 ~ 0.25 seconds, while during panoramic radiography the selected exposure setting was 72 kVp, 8 mA and 18 seconds. Absorbed dose measurements were obtained and equivalent doses to individual organs were summed using ICRP 103 to calculate of effective dose. Result: In the full-mouth periapical radiography, the highest absorbed dose was recorded at the mandible body follow with submandibular glands and cheek. Using panoramic unit, the highest absorbed dose was parotid glands and the following was back of neck and submandibular glands. The effective dose in full-mouth periapical radiography using portable dental x-ray machine was 46 ${\mu}Sv$. In panoramic radiography, the effective dose was 38 ${\mu}pSv$. Conclusion: It was recommended to panoramic radiography for general check in the head and neck area because that the effect dose in the panoramic radiography was lower than the dose in the full-mouth periapical radiography using portable dental x-ray machine.

A Study of Three-dimension Tissue Equivalent Compensator for 6MV X-Rays (6MV X-선에 대한 삼차원적 조직보상체의 연구)

  • Kim, Ok-Bae;Choi, Tae-Jin;Suh, Soo-Jhi
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.133-140
    • /
    • 1989
  • Three-dimension paraffin compensator was designed to construct the tissue equivalent compensator for irregular body contours and obiliques beam incidence. The ratio of compensator thickness to tissue deficit was depended on field size, depth and air gap because the scattered dose loss. The ratio of compensator-tissue was optimized 0.79, 0.73, 0.61 and 0.56 in 6MV x-rays as function of field size $4{\times}4$, $10{\times}10$, $20{\times}20$ and $30{\times}30cm^2$ respectively. in our study. Using this tissue equivalent compensator, it can be got 2% difference of dose at same mid-plane in phantom study.

  • PDF

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu;Ismail, Aznan Fazli;Samat, Supian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.325-336
    • /
    • 2019
  • The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

Domestic Intercomparison Study for the Performance of Personnel Dosimeters (개인선량계 성능의 국내 상호비교)

  • Kim, Jang-Lyul;Chang, Si-Young;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.3
    • /
    • pp.147-153
    • /
    • 1996
  • The Korea Atomic Energy Research Institute(KAERI) conducted a intercomparison study for personnel dosimetry services in Korea to enhance the accuracy and precision of the dosimetry system. Nine types of dosimeters(6 TLD, 3 film badge) from 7 institutions took part in this intercomparison study. Each participant submitted 30 dosimeters including transit control for irradiations. Both TLDs and film badges were irradiated with Cs-137 gamma, Sr/Y-90 beta and 4 X-ray beams in ISO wide series. Four dosimeters were irradiated on phantom with same dose equivalent for each field category. The delivered dose equivalent was in the range of $0.1{\sim}10mSv$. The participants assessed the results of their dosimeter readings in terms of the ICRU operational quantities for personal monitoring, Hp(10) and Hp(0.07). Most participants except 1 dosimeter estimated the delivered dose equivalent with biases less than ${\pm}25%$ for Cs-137 and Sr/Y-90. But for X-rays, the biases exceeded ${\pm}35%$ in some cases bacause the dose evaluation algorithm was based on the ANSI N13.11 X-ray fields which are different from those given by ISO.

  • PDF

Intercomparison Study of the Neutron Personnel Dosemeters (중성자 개인선량계 상호비교)

  • Kim, Bong-Hwan;Kim, Jang-Lyul;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 1998
  • Domestic intercomparison study of the neutron personnel dosemeters was performed for the first time in Korea. Thirteen types of neutron dosemeters from twelve institutions took part in this intercomparison study and the $D_2O$ moderated Cf-252 source of KAERI was used for irradiation. Eight of the fifteen dosemeters submitted by each participant were divided into two groups and each group was irradiated with different doses of the simulated mixed fields of neutron and gamma. The participants assessed their dosemeter reading in terms of the personal dose equivalent, Hp(10), for both neutron and gamma dose. The ratio of the reported dose equivalent to the delivered dose equivalent for comparison between participants ranged from 0.55 to 1.34 for neutron, from 0.54 to 1.32 for gamma and from 0.75 to 1.20 for total dose. This intercomparison results show that all dosemeter processors, especially for neutron category, are able to pass the personnel dosemeter performance test which shall be enforced according to the ordinance of the MOST, No. 96-6.

  • PDF

Dose Evaluation of Neutron within Containment Building of a CE type Nuclear Power Plant (CE형 원전의 격납건물내 중성자선량 평가)

  • Kim Tae Wook;Han Jae Mun;Kim Kyung Doek;Yun Cheol Whan;Suh Jang Soo;Kim Young Jae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • From measured results of the neutron fields at some principal places within the containment building in a CE type nuclear power plant in operation, the radiation exposure of a worker to the neutron at there was evaluated and the equivalent dose reflecting new recommendation (ICRP 60) was compared with that doing the old one (ICRP 26). The measured neutron field was also compared with calibration neutron field. From the analysis, the following conclusion was obtained: the average neutron radiation weighting factor according to new recommendation is 2.41 to 2.71 times higher than the old one. The average neutorn radiation weighting factor at the measured place was similar to that at calibration neutron field. The average neutron energy at measured place was between 42 and 158 keV and higher than that of calibration field of 500 keV. So, the measured equivalent dose in nuclear power plant could be overestimated compared to the real equivalent dose.

  • PDF