• 제목/요약/키워드: Equivalent Capacitor

검색결과 242건 처리시간 0.029초

Analysis of Frequency Response Curve for Conduction-Cooled Power Capacitors (전도 냉각 파워 커패시터의 주파수 응답 곡선 분석)

  • An, Gyeong Moon;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제53권10호
    • /
    • pp.123-130
    • /
    • 2016
  • High-frequency induction heating equipment can heat the metal by applying a High-Frequency power to the resonant circuit. The resonance circuit is composed of the work coil and the conduction-cooled power capacitor, it influences the performance of the heat treatment equipment according to the characteristics of the capacitor. However, dependence on conduction-cooled power capacitor's import is high due to lack of core technology research and development. Minimizing the generation of internal heat transmitted inside during LC resonance, reduce the reactive power loss, there is a need for a capacitor within the voltage characteristic outstanding. To implement localization it is vital that prior study of the analysis on the frequency response characteristic for the finished capacitor advanced manufacturer be implemented. Studying the interpolation method to read the value at any point of the characteristic curve for a given log-log scale was applied to the analysis tool of the capacitor by my proposed algorithm. The simulation for reproducing frequency response curves was attempted by assuming a capacitor in a simplified series equivalent RC circuit to obtain the equivalent series resistance value. It was confirmed that the reproduction rate was the result value above 83% as compared to the simulation of the properties and characteristics on the actual reactive power for Peak value, and that the algorithm can be applicable when analyzing and predicting the characteristic curves of a simpled model capacitor.

Characteristic Investigation of External Parameters for Fault Diagnosis Reference Model Input of DC Electrolytic Capacitor (DC 전해 커패시터의 고장진단 기준모델 입력을 위한 외부변수의 특성 고찰)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제61권4호
    • /
    • pp.186-191
    • /
    • 2012
  • DC Bus Electrolytic capacitors have been widely used in power conversion system because they can achieve high capacitance and voltage ratings with volumetric efficiency and low cost. This type of capacitors have been traditionally used for filtering, voltage smoothing, by-pass and other many applications in power conversion circuits requiring a cost effective and volumetric efficiency components. Unfortunately, electrolytic capacitors are some of the weakest components in power electronic converter. Many papers have proposed different methods or algorithms to determinate the ESR and/or capacitance C for fault diagnosis of the electrolytic capacitor. However, both ESR and C vary with frequency and temperature. Accurate knowledge of both values at the capacitors operating conditions is essential to achieve the best reference data of fault judgement. According to parameter analysis, the capacitance increases with temperature and the ESR decreases. Higher frequencies make the ESR and C to decrease. Analysis results show that the proposed electrolytic capacitor parameter estimation technique can be applied to reference signal of capacitor diagnosis systems successfully.

Electrochemical Characteristics of Hybrid Capacitor and Pulse Performance of Hybrid Capacitor / Li-ion Battery (Hybrid Capacitor의 전기화학적 특성 및 Hybrid Capacitor / Li-ion Battery의 펄스 방전 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제18권12호
    • /
    • pp.1133-1138
    • /
    • 2005
  • In this study, we have prepared, as the pluse power source, a commercially supplied Li-ion battery with a capacity of 700 mAh and AC resistivity of 60 md at 1 kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected hybrid capacitor/Li-ion battery source. The nonaqueous asymmetric hybrid capacitors constituted with each stack number of pairs composed of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The 10 stacked hybrid capacitor, which was charged and discharged at a constant current at 0.25 $mA/cm^2$ between 3 and 4.3 V, has exhibited the capacitance of 108F and the lowest equivalent series resistance was 32 $m{\Omega}$ at 1 kHz. On the other hand, the enhanced run time of Li-ion battery assisted by the hybrid capacitor was obtained with increasing of current density and pulse width in Pulse mode. The best improvement, $84\;\%$ for hybrid capacitor/Li-ion battery was obtained in the condition of a 7C-rate pulse (100 msec)/0.5C-rate standby/$10\;\%$ duty cycle.

Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination (Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

Analysis of Electrical Characteristics of Interdigital Capacitor with Graphenes (그래핀이 결합된 인터디지털 커패시터의 전기적 특성분석)

  • Lee, Hee-Jo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제26권12호
    • /
    • pp.1064-1071
    • /
    • 2015
  • In this paper, the electrical characteristics of interdigital capacitor with single-layer and multi-layer graphene were compared and analyzed in the microwave region. In equivalent circuit, a capacitor coupled with graphene showed the clear difference in electrical components such as resistance, inductance, and capacitance. In particular, for the capacitor with single-layer graphene, additional inductance and resistance occurred and the electrode resistance was also increased. Meanwhile, the self-resonance frequency of capacitor was shifted toward lower frequency region and its transmitted characteristic was considerably improved at frequency ranging from 0.4 to 4 GHz. The electrical characteristics of the capacitor with multi-layer graphene were somewhat different than the bare capacitor. In conclusion, we could confirm that single-layer graphene greatly influenced the electrical characteristics and performances of interdigital capacitor compared to multi-layer graphene.

Single-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation for Simple and Low Cost Stand-Alone Renewable Energy Utilizations Part I : Analytical Study

  • Ahmed, Tarek;Noro, Osamu;Soshin, Koji;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권1호
    • /
    • pp.17-26
    • /
    • 2003
  • In this paper, the comparative steady-state operating performance analysis algorithms of the stand-alone single-phase self-excited induction generator (SEIG) is presented on the basis of the two nodal admittance approaches using the per-unit frequency in addition to a new state variable de-fined by the per-unit slip frequency. The main significant features of the proposed operating circuit analysis with the per-unit slip frequency as a state variable are that the fast effective solution could be achieved with the simple mathematical computation effort. The operating performance results in the simulation of the single-phase SEIG evaluated by using the per-unit slip frequency state variable are compared with those obtained by using the per-unit frequency state variable. The comparative operating performance results provide the close agreements between two steady-state analysis performance algorithms based on the electro-mechanical equivalent circuit of the single-phase SEIG. In addition to these, the single-phase static VAR compensator; SVC composed of the thyristor controlled reactor; TCR in parallel with the fixed excitation capacitor; FC and the thyristor switched capacitor; TSC is ap-plied to regulate the generated terminal voltage of the single-phase SEIG loaded by a variable inductive passive load. The fixed gain PI controller is employed to adjust the equivalent variable excitation capacitor capacitance of the single-phase SVC.

Reference Model Updating of Considering Disturbance Characteristics for Fault Diagnosis of Large-scale DC Bus Capacitors (대용량 직류버스 커패시터의 고장진단을 위한 외란특성 반영의 레퍼런스 모델 개선)

  • Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제66권4호
    • /
    • pp.213-218
    • /
    • 2017
  • The DC electrolytic capacitor for DC-link of power converter is widely used in various power electronic circuits and system application. Its functions include, DC Bus voltage stabilization, conduction of ripple current due to switching events, voltage smoothing, etc. Unfortunately, DC electrolytic capacitors are some of the weakest components in power electronics converters. Many papers have proposed different algorithms or diagnosis method to determinate the ESR and tan ${\delta}$ capacitance C for fault alarm system of the electrolytic capacitor. However, both ESR vary with frequency and temperature. Accurate knowledge of both parameters at the capacitors operating conditions is essential to achieve the best reference data of fault alarm. According to parameter analysis, the capacitance increases with temperature and the initial ESR decreases. Higher frequencies make the reference ESR with the initial ESRo value to decrease. Analysis results show that the proposed DC Bus electrolytic capacitor reference ESR model setting technique can be applied to advanced reference signal of capacitor diagnosis systems successfully.

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

Design and Analysis of Electrical Properties of a Multilayer Ceramic Capacitor Module for DC-Link of Hybrid Electric Vehicles

  • Yoon, Jung-Rag;Moon, Bong Hwa;Lee, Heun Young;Jeong, Dae Yong;Rhie, Dong Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.808-812
    • /
    • 2013
  • Multilayer capacitors with high ripple current and high capacitance were manufactured. The electrical properties of these capacitors were characterized for potential application for DC-link capacitors in hybrid electric vehicle inverters. Internal electrode structures were designed to achieve high capacitance and reliability. A single multilayer capacitor showed $0.46{\mu}F/cm^3$ of capacitance, 0.65% of dielectric loss, and 1450 V to 1650 V of dielectric breakdown voltage depending on the design of the internal electrode. The capacitor module designed with several multilayer capacitors gave a total capacitance of $450{\mu}F$, which is enough for hybrid electric vehicles. In particular, an equivalent series resistance of $4.5m{\Omega}$ or less will result in 60 $A_{rms}$, thereby reaching the allowed ripple current for hybrid electric vehicles.