• Title/Summary/Keyword: Equipment qualification

Search Result 152, Processing Time 0.021 seconds

A study on technical standards and procedures related to qualification of nuclear safety grade equipment (원전 안전등급설비의 기기검증 관련 기술표준 및 절차)

  • Lee, Dong Yeon;Kim, Myeong Yun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In this paper, the regulations and technical standards related to qualification of safety grade equipment in nuclear power plants are critically reviewed with the qualification procedure in terms of structures, systems, and equipment in nuclear power plants. These facilities should be designed and constructed to protect from natural conditions or disasters and to perform their safety functions even in case of postulated accidents. Equipment Qualification is to demonstrate that the safety related equipment is designed and constructed to perform their safety functions under normal and accident conditions. It is classified into environmental qualification and seismic qualification.

Trend of Environmental Qualification of Safety-Related Digital Equipment in Nuclear Power Plants (원자력발전소 안전 관련 디지털 기기의 내환경검증 (Environmental Qualification) 동향)

  • Jae Seung Ko;Sang Eun Kim;Sung-ryul Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • Environmental qualification is required for safety related electrical equipment under harsh environments located in nuclear power plants according to 10 CFR 50.49 and RG 1.89. As analog technology has recently been replaced by digital technology, NRC established RG 1.209 as a regulatory guideline for environmental qualification of safety related computer-based I&C system located in mild environments, requiring evaluation for electromagnetic compatibility, smoke exposure and type test for actual service conditions such as temperature and humidity. In this paper, the trend of environmental qualification for digital equipment is analyzed by comparing the environmental qualification requirements between digital and analog equipment.

Determining Vibration Qualification Level for the Equipment Loaded Inside a Tracked Vehicle (궤도차량 탑재장비의 진동 내구성 평가를 위한 시험수준 결정방법 연구)

  • Choi, Chang-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • The equipment composed of many complicated electronic stuffs undergoes diverse stresses caused by mechanical vibrations during its service. Thus, to ensure its proper operation in the field a simulated vibration test has to be carried out in the laboratory with the Vibration Qualification Level, the test specification, which can include the real environment. In this paper we intent to deal with method and procedure for determining the Vibration Qualification Level so as to estimate the vibration-endurance for the equipment precisely.

  • PDF

A Study on the Reliability Assesment of Solar Photovoltaic and Thermal Collector System (태양광열 시스템의 신뢰성 평가에 관한 연구)

  • Park, Tae-Kook;Bae, Seung-Hoon;Kim, Sang-Kyo;Kim, Seon-Min;Kim, Dae-Hwan;Eom, Hak-Yong;Lee, Keun-Hui
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.49-64
    • /
    • 2020
  • Photovoltaic and Thermal collector (PV/T) systems are renewable energy devices that can produce electricity and heat energy simultaneously using solar panels and heat exchangers. Since PV/T systems are exposed to the outdoors, their reliability is affected by various environmental factors. This paper presents a reliability test for a PV/T system and evaluates the test results. The reliability assessment entails performance, environment, safety, and life tests. The factor that had the greatest influence on the life of the system was the hydraulic pressure applied to the heat exchanger. A test was conducted by repeatedly applying pressure to the PV/T system, and a reliability analysis was conducted based on the test results. As a result, the shape parameter (β) value of 5.6658 and the B10life 308,577 cycles at the lower 95% confidence interval were obtained.

The Study on Equipment Qualification of Emergency Diesel Generator Excitation Control System for Nuclear Power Plant (I) (원전 디젤발전기 여자시스템 기기검증시험에 관한 연구(I))

  • Lee, Joo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.143-145
    • /
    • 2007
  • The development of excitation control system (ECS) for emergency diesel generator in nuclear power plant is the replacement project of existing control system to resolve the maintenance problems caused by aging and obsolescence, The excitation control system is classified as a safety-related system. To guarantee the performance of developing excitation control system is equal to or higher than that of other systems, establishing the quality assurance scheme, doing software verification and validation activities, and planning equipment qualification. In this paper, we'd like to introduce the equipment qualification of excitation control system.

  • PDF

Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants (원자력발전소 안전등급 대형유도전동기의 기기검증)

  • Ko, W.S.;Kim, J.;Hur, I.G.;Choi, B.W.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.498-503
    • /
    • 2000
  • A safety-related equipment for use in Nuclear Power Plant should be needed an Equipment Qualification. This paper presents the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5&6 Nuclear Power Plants. In this paper, the method of qualification is a combination of type test and analysis method, which is composed of Radiation exposure test, Seismic simulation test, Thermal aging analysis for non-metallic materials and Seismic analysis. It is found that the motor performs its safety function with no failure mechanism under postulated service conditions.

  • PDF

Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants (원자력발전소 안전등급 대형유도전동기의 기기검증)

  • Lee, Hyoung-Woo;Ko, Woo-Sik;Ryu, Jeong-Hyeon;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.72-77
    • /
    • 2007
  • A safety-related equipment for the nuclear power plant should be needed an equipment qualification. In this paper, the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5, 6 Nuclear Power Plants were presented. The method of qualification is a combination of experimental test and analytic method, which is composed of radiation exposure test, seismic simulation test, thermal aging analysis for non-metallic materials, and seismic analysis. The results showed that the motor performed its safety function with no failure mechanism under postulated service conditions.

The Classification Plan on Safety Certification System of Temporary Equipment (건설 가설재의 안전인증 분류방안)

  • Park, Sang-Wook;Park, Jun-Mo;Kim, Ok-Kyue
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.794-799
    • /
    • 2008
  • At the point of changing from the capacity qualification of temporary equipments for building to safety certification system, the meaning of qualification and the present state of main products are evaluated for Capacity qualification system and compare with related system in developed country. These suggest classification of temporary equipments for building construction in safety certification. Now, present state of the capacity qualification system is estimated; according to the reforming system from restating law in 2003, there are a lot of changing of application in every 3 years because of that. The ability of Making business is improved by checking again but, there are limitation to constantly keep the safety as the system to approve form about sent imitation products. Changing from the capacity qualification system to safely certification system make to include the structure of the qualification system and make a plan standard. It make least panic in the building market and set up some standards for capacity by changing building circumstance. The classification of temporary equipment for building construction in safety certification from the module of quotation form classify each duty quotation item, self-regulation safely verification item and option quotation item, these will more improve the system form and quality of temporary equipment for building than before.

  • PDF

Quality Assurance system for Nuclear Power Plant Equipment Qualification in Korea (국내 원전기기 성능검증 품질보증체계 구축에 관한 연구)

  • 남지희;이영건;임남진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • This paper investigates different QA standards such as KEPIC QAP, KEPIC END 1200, ISO/1EC 17025 etc. and as a result defines QA elements for Nuclear Power Plant equipment qualification(EQ) in Korea. This paper also proposes a practical QA certification system appropriate for an Integrated Organization for EQ which is being planned to be established in Korea. Since the level of the Korean EQ technology is comparatively low, the Korean manufacturers of the Nuclear Power Plant(NPP) equipment have usually used overseas EQ services. The EQ related organizations in Korea are making efforts to construct the integrated EQ system. In connection with this, it is required that the QA elements and QA certification system suitable for EQ in Korea be developed.

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.