• Title/Summary/Keyword: Equilibrium problem

Search Result 491, Processing Time 0.021 seconds

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.

Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Bekki, Hadj
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.83-100
    • /
    • 2016
  • In this paper, the problem of interfacial stresses in steel beams strengthened with a fiber reinforced polymer plates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach developed by Tounsi (2006) where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The analysis provides efficient calculations for both shear and normal interfacial stresses in steel beams strengthened with composite plates, and accounts for various effects of Poisson's ratio and Young's modulus of adhesive. Such interfacial stresses play a fundamental role in the mechanics of plated beams, because they can produce a sudden and premature failure. The analysis is based on equilibrium and deformations compatibility approach developed by Tounsi (2006). In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the steel beam and bonded plate. The paper is concluded with a summary and recommendations for the design of the strengthened beam.

Field measurement and numerical simulation of snow deposition on an embankment in snowdrift

  • Ma, Wenyong;Li, Feiqiang;Sun, Yuanchun;Li, Jianglong;Zhou, Xuanyi
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.453-469
    • /
    • 2021
  • Snow accumulation on the road frequently induces a big traffic problem in the cold snowy region. Accurate prediction on snow distribution is fundamental for solving drifting snow disasters on roads. The present study adopts the transient method to simulate the wind-induced snow distribution on embankment based on the mixture multiphase model and dynamic mesh technique. The simulation and field measurement are compared to confirm the applicability of the simulation. Furthermore, the process of snow accumulation is revealed. The effects of friction velocity and snow concentration on snow accumulation are analyzed to clarify its mechanism. The results show that the simulation agrees well with the field measurement in trends. Moreover, the snow accumulation on the embankment can be approximately divided into three stages with time, the snow firstly deposited on the windward side, then, accumulation occurs on the leeward side which induced by the wake vortex, finally, the snow distribution reaches an equilibrium state with the slope of approximately 7°. The friction velocity and duration have a significant influence on the snow accumulation, and the vortex scale directly affected the snow deposition range on the embankment leeward side.

Passivity-Based Control System of Permanent Magnet Synchronous Motors Based on Quasi-Z Source Matrix Converter

  • Cheng, Qiming;Wei, Lin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1527-1535
    • /
    • 2019
  • Because of the shortcomings of the PID controllers and traditional drive systems of permanent magnet synchronous motors (PMSMs), a PMSM passivity-based control (PBC) drive system based on a quasi-Z source matrix converter (QZMC) is proposed in this paper. The traditional matrix converter is a buck converter with a maximum voltage transmission ratio of only 0.866, which limits the performance of the driven motor. Therefore, in this paper a quasi-Z source circuit is added to the input side of the two-stage matrix converter (TSMC) and its working principle has also been verified. In addition, the controller of the speed loop and current loop in the conventional vector control of a PMSM is a PID controller. The PID controller has the problem since its parameters are difficult to adjust and its anti-interference capability is limited. As a result, a port controlled dissipative Hamiltonian model (PCHD) of a PMSM is established. Thereafter a passivity-based controller based on the interconnection and damping assignment (IDA) of a QZMC-PMSM is designed, and the stability of the equilibrium point is theoretically verified. Simulation and experimental results show that the designed PBC control system of a PMSM based on a QZMC can make the PMSM run stably at the rated speed. In addition, the system has strong robustness, as well as good dynamic and static performances.

Envisaging Macroeconomics Antecedent Effect on Stock Market Return in India

  • Sivarethinamohan, R;ASAAD, Zeravan Abdulmuhsen;MARANE, Bayar Mohamed Rasheed;Sujatha, S
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.311-324
    • /
    • 2021
  • Investors have increasingly become interested in macroeconomic antecedents in order to better understand the investment environment and estimate the scope of profitable investment in equity markets. This study endeavors to examine the interdependency between the macroeconomic antecedents (international oil price (COP), Domestic gold price (GP), Rupee-dollar exchange rates (ER), Real interest rates (RIR), consumer price indices (CPI)), and the BSE Sensex and Nifty 50 index return. The data is converted into a natural logarithm for keeping it normal as well as for reducing the problem of heteroscedasticity. Monthly time series data from January 1992 to July 2019 is extracted from the Reserve Bank of India database with the application of financial Econometrics. Breusch-Godfrey serial correlation LM test for removal of autocorrelation, Breusch-Pagan-Godfrey test for removal of heteroscedasticity, Cointegration test and VECM test for testing cointegration between macroeconomic factors and market returns,] are employed to fit regression model. The Indian market returns are stable and positive but show intense volatility. When the series is stationary after the first difference, heteroskedasticity and serial correlation are not present. Different forecast accuracy measures point out macroeconomics can forecast future market returns of the Indian stock market. The step-by-step econometric tests show the long-run affiliation among macroeconomic antecedents.

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

Proposals for flexural capacity prediction method of externally prestressed concrete beam

  • Yan, Wu-Tong;Chen, Liang-Jiang;Han, Bing;Wei, Feng;Xie, Hui-Bing;Yu, Jia-Ping
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.363-375
    • /
    • 2022
  • Flexural capacity prediction is a challenging problem for externally prestressed concrete beams (EPCBs) due to the unbonded phenomenon between the concrete beam and external tendons. Many prediction equations have been provided in previous research but typically ignored the differences in deformation mode between internal and external unbonded tendons. The availability of these equations for EPCBs is controversial due to the inconsistent deformation modes and ignored second-order effects. In this study, the deformation characteristics and collapse mechanism of EPCB are carefully considered, and the ultimate deflected shape curves are derived based on the simplified curvature distribution. With the compatible relation between external tendons and the concrete beam, the equations of tendon elongation and eccentricity loss at ultimate states are derived, and the geometric interpretation is clearly presented. Combined with the sectional equilibrium equations, a rational and simplified flexural capacity prediction method for EPCBs is proposed. The key parameter, plastic hinge length, is emphatically discussed and determined by the sensitivity analysis of 324 FE analysis results. With 94 collected laboratory-tested results, the effectiveness of the proposed method is confirmed, and comparisons with the previous formulas are made. The results show the better prediction accuracy of the proposed method for both stress increments and flexural capacity of EPCBs and the main reasons are discussed.

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Buckling and bending of coated FG graphene-reinforced composite plates and shells

  • Ahmed Amine Daikh;Amin Hamdi;Hani M. Ahmed;Mohamed S. Abdelwahed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.113-128
    • /
    • 2023
  • The advancement of theoretical research has numerous challenges, particularly with regard to the modeling of structures, in contrast to experimental investigation of the mechanical behavior of complex systems. The main objective of this investigation is to provide an analytical analysis of the static problem of a new generation of composite structure, namely, functionally graded FG graphene reinforced composite GRC coated plates/shells. A complex power law function is used to define the material's graduation. Investigations are conducted on Hardcore and Softcore coated FG plates/shells. The virtual work approach is used to perform the equilibrium equations, which are then solved using the Galerkin technique to account for various boundary conditions. With reliable published articles, the presented solution is validated. The effects of hardcore and softcore distributions, gradation indexes, and boundary conditions on the buckling, bending deflection and stresses of FG GRC-coated shells are presented in detail. Obtained results and the developed procedure are supportive for design and manufacturing of FG-GRC coated plates/shells in several fields and industries e.g., aerospace, automotive, marine, and biomedical implants.