• Title/Summary/Keyword: Equilibrium Diffusion Model

Search Result 131, Processing Time 0.022 seconds

An Equilibrium Diffusion Model of Demand and Supply of New Product and Empirical Analysis (신기술 제품의 확산에 관한 수요$\cdot$공급의 균형확산모형과 실증분석)

  • Ha, Tae-Jeong
    • Journal of Technology Innovation
    • /
    • v.13 no.1
    • /
    • pp.113-139
    • /
    • 2005
  • The purpose of this study is to analyse the diffusion process of personal computer (PC) in Korea during the 1990's. To achieve the goal, five research steps have been done such as the literature survey of diffusion theory, set-up of theoretic equilibrium model of supply and demand, derivation of an equilibrium path using Hamiltonian, and empirical analysis. The empirical analysis has been performed based on that equilibrium path. The results can be summarized as follows : First, technological attribute of diffusing product influences the diffusion speed of Product. It has been proven that the size of the network has a significant effect on the diffusion of PC in empirical study Second, supply factors have an important role in the diffusion process. According to the empirical analysis, decreasing cost of production as a result of technological advance promotes the speed of diffusion. This point seems to be manifest theoretically, but existing empirical models have not included supply factors explicitly, Third, it has been found out that expectation of decreasing cost would influence the speed of diffusion negatively as expected ex ante. Theoretically this result is supported by arbitrage condition of purchasing timing.

  • PDF

Applications of the Fast Grain Boundary Model to Cosmochemistry (빠른 입계 확산 수치 모델의 우주화학에의 적용)

  • Changkun Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • Diffusion is a powerful tool to understand geological processes recorded in terrestrial rocks as well as extraterrestrial materials. Since the diffusive exchange of elements or isotopes may have occurred differently in the solar nebula (high temperature and rapid cooling) and on the parent bodies (fluid-assisted thermal metamorphism at relatively low temperature), it is particularly important to model elemental or isotopic diffusion profiles within the mineral grains to better understand the evolution of the early solar system. A numerical model with the finite difference method for the fast grain boundary diffusion was established for the exchange of elements or isotopes between constituent minerals in a closed system. The fast grain boundary diffusion numerical model was applied to 1) 26Mg variation in plagioclase of an amoeboid olivine aggregate (AOA) from a CH chondrite and 2) Fe-Mg interdiffusion between chondrules, AOA, and matrix minerals in a CO chondrite. Equilibrium isotopic fractionation and equilibrium partitioning were also included in the numerical model, based on the assumption that equilibrium can be reached at the interfaces of mineral crystals. The numerical model showed that diffusion profiles observed in chondrite samples likely resulted from the diffusive exchange of elements or isotopes between the constituent minerals. This study also showed that the closure temperature is determined not only by the mineral with the slowest diffusivity in the system, but also strongly depends on the constituent mineral abundances.

A Dynamic Analysis on the Competition Relationships in Korean Stock Market Using Lotka-Volterra Model (Lotka-Volterra 모형을 이용한 국내 주식시장의 경쟁관계 동태적 분석)

  • Lee, Sung Joon;Lee, Deok-Joo;Oh, Hyungsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • The purpose of this paper is an attempt to analyze the dynamic relationship between KSE and KOSDAQ, two competing markets in Korean stock market, in the viewpoint of competition. Lotka-Volterra model, one of well-known competitive diffusion model, is adopted to represent the competitive situations of Korean stock market and it is estimated using daily empirical index data of KSE and KOSDAQ during 1997~2001. The results show that there existed a predator-prey relationship between two markets in which KSE acted as a predator right after the emergence of KOSDAQ. This interaction was altered to a symbiotic relationship and finally to the pure competition relationship. We also perform an equilibrium analysis of the estimated Lotka-Volterra equations and, as a result, it is found that there is a market index equilibrium point that would be stable in the latest relationship.

Adsorption Characteristics of Nickel, Zinc and Cadmium Ions using Alginate Bead (Alginate Bead를 이용한 니켈, 아연, 카드뮴의 흡착특성에 관한 연구)

  • Jung, Heung-Joe
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This study investigated the adsorption characteristics of nickel, zinc and cadmium ions from the aqueous solution onto the alginate bead. Adsorption equilibrium capacities of the heavy metal ions increased with increasing initial pH of the solution. The adsorption equilibrium isotherm of the heavy metal ions was well represented by Langmuir equation. The magnitude of adsorption capacity of the heavy metal ions onto alginate bead was the order of cadmium > zinc > nickel. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the heavy metal ions. The internal diffusion coefficient of the heavy metal ions in the intraparticle were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model (SDM) and pore diffusion model (PDM). The internal diffusion of the heavy metal ions in the intraparticles was explained by PDM.

Preparation of Glycidylmethacrylate-Divinylbenzene Copolymers Containing Phosphoric Acid Groups and Their Adsorption Characteristics of Uranium(II) - Adsorption Equilibrium and Kinetics of Uranium on RGP Resins - (인산기를 함유한 Glycidylmethacrylate-Divinylbenzene 공중합체의 제조와 우라늄 흡착특성(제2보) - RGP수지에 대한 우라늄의 흡착평형과 흡착속도 -)

  • Huh, Kwang Sun;Park, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.689-697
    • /
    • 1998
  • In this work, we studied the equilibrium, rate and rate determining step of uranium adsorption on RGP resins of MR type prepared by varying the degree of crosslinking and the amount of diluent. The equilibrium of uranium adsorption on RGP resins were well explained by Frendrich isotherm as well as Langmuir isotherm model. The amount of adsorption and adsorption rate increase with the adsorption temperature. The heat of the adsorption was 11 kcal/mol. The adsorption rates of uranium on RGP resins were decreased in the order of RGP-10(50)>RGP-1(50)>RGP-2(50)>RGP-5(50)>RGP-0(50) and RGP-2(75)>RGP-2(100)>RGP-2(50)>RGP-2(30)>RGP-2(0). The diffusion resistance of uranium into RGP resin increased as follows; molecular diffusion < pore diffusion < surface diffusion. On the other hand, the surface diffusion was more dominative than the pore diffusion in intraparticle region. Thus, this result indicates that the adsorption mechanism of uranium on RGP resins is intraparticle diffusion controlled.

  • PDF

Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model (디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

DYNAMICS OF A MODIFIED HOLLING-TANNER PREDATOR-PREY MODEL WITH DIFFUSION

  • SAMBATH, M.;BALACHANDRAN, K.;JUNG, IL HYO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.139-155
    • /
    • 2019
  • In this paper, we study the asymptotic behavior and Hopf bifurcation of the modified Holling-Tanner models for the predator-prey interactions in the absence of diffusion. Further the direction of Hopf bifurcation and stability of bifurcating periodic solutions are investigated. Diffusion driven instability of the positive equilibrium solutions and Turing instability region regarding the parameters are established. Finally we illustrate the theoretical results with some numerical examples.

A Chemotherapy-Diffusion Model for the Cancer Treatment and Initial Dose Control

  • Abdel-Gawad, Hamdy Ibrahim;Saad, Khaled Mmohamed
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.395-410
    • /
    • 2008
  • A one site chemotherapy agent-diffusion model is proposed which accounts for diffusion of chemotherapy agent, normal and cancer cells. It is shown that, by controlling the initial conditions, consequently an initial dose of the chemotherapy agent, the system is guaranteed to evolute towards a target equilibrium state. Or, growth of the normal cells occurs against decay of the cancer cells. Effects of diffusion of chemotherapy-agent and cells are investigated through numerical computations of the concentrations in square and triangular cancer sites.

Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion (역확산을 고려한 이원합금의 비평형 수지상응고 해석)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3361-3370
    • /
    • 1996
  • Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit.

Adsorption-Desorption Modeling of Pollutants on Granular Activated Carbon (오염물질에 대한 입상 활성탄의 흡·탈착 모델링)

  • Wang, Chang Keun;Weber, Walter J. Jr.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 1993
  • It is important to understand the interrelationship between adsorption, equilibrium and mass transport in efficient design and operation of the granular activated carbon(GAC) adsorption systems. In this study, the micro-diameter-depth adsorption system(MIDDAS) technique was developed to estimate equilibrium and mass transport parameters, which were utilized to simulate adsorption and mass transport phenomena dynamically and mathematically. The homogeneous surface diffusion model(HSDM) utilizing the estimated equilibrium and mass transport parameters including the film transfer coefficients and surface diffusivities from the MIDDAS technique, successfully predicted competitive adsorption, desorption and chromatographic displacement effects. In the binary solute system of p-chlorophenol(PCP) and p-nitrophenol(PNP), PCP was displaced by PNP and the HSDM could predict successfully. While the HSDM described the desorption breakthrough curves for PCP, PNP and PTS well when complete reversible adsorption was assumed, the desorption breakthrough curves for DBS could be predicted after subsequent incorporation of the degree of irreversibility into the model simulations.

  • PDF