References
- J.T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecol, 56 (1975) 855-867. https://doi.org/10.2307/1936296
- D.J. Wollkind, J.B. Collings and J.A. Logan, Metastability in a temperature-dependent model system for predator-prey mite Outbreak interactions on fruit fies, Bull. Math. Biol, 50 (1988) 379-409. https://doi.org/10.1016/S0092-8240(88)90005-5
- E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math, 59 (1999) 1867-1878. https://doi.org/10.1137/S0036139997318457
- M.P. Hassell, The Dynamics of Arthropod Predator-Prey Systems, Princeton University Press, Princeton, NJ, 1978.
- C.S. Holling, The functional response of invertebrate predators to prey density, Mem. Ent. Soc. Can, 45 (1965) 3-60.
- R.M. May, Stability and Complexity in Model Eco Systems, Second ed., Princeton Univ. Press, 1974.
- J.D. Murray, Mathematical Biology-I: An Introduction, Springer-Verlag, New York, 2002.
- J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol, 44 (1975) 331-340. https://doi.org/10.2307/3866
- D.L. DeAngelis, R.A. Goldstein and R.V. ONeill, A model for trophic interactions, Ecol, 56 (1975) 881-892. https://doi.org/10.2307/1936298
- R. Artidi and L.R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theoret. Biol, 139 (1989) 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
- P.A. Braza, The bifurcation structure of the Holling-Tanner model for predator-prey interactions using twotiming, SIAM J. Appl. Math, 63 (2003) 889-904. https://doi.org/10.1137/S0036139901393494
- S. Chen and J. Shi, Global stability in a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett, 25 (2012) 614-618. https://doi.org/10.1016/j.aml.2011.09.070
- Gul Zaman, Yong Han Kang and Il Hyo Jung, Stability analysis and optimal vaccination of an SIR epidemic model, Biosystems, 93 (2008) 240-249. https://doi.org/10.1016/j.biosystems.2008.05.004
- S.B. Hsu and T.W. Hwang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math, 55 (1995) 763-783. https://doi.org/10.1137/S0036139993253201
- S.B. Hsu and T.W. Huang, Hopf bifurcation analysis for a predator-prey system of Holling and Leslie Type, Taiwan. J. Math, 3 (1999) 35-53. https://doi.org/10.11650/twjm/1500407053
- R. Peng and M. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model, Appl. Math. Lett, 20 (2007) 664-670. https://doi.org/10.1016/j.aml.2006.08.020
- R. Peng and M. Wang, Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross-diffusion, Appl. Math. Comput, 196 (2008) 570-577. https://doi.org/10.1016/j.amc.2007.06.019
- M. Sambath and K. Balachandran, Pattern formation for a ratio-dependent predator-prey model with cross diffusion, J. Korean Soc. Ind. Appl. Math, 16 (2012) 249-256. https://doi.org/10.12941/jksiam.2012.16.4.249
- M. Sambath, S. Gnanavel and K. Balachandran, Stability Hopf Bifurcation of a diffusive predator-prey model with predator saturation and competition, Applicable Analysis, 92 (2013) 2439-2456. https://doi.org/10.1080/00036811.2012.742185
- M. Sambath and K. Balachandran, Bifurcations in a diffusive predator-prey model with predator saturation and competition response, Mathematical Models and Methods in Applied Sciences, 38 (2015) 785-798. https://doi.org/10.1002/mma.3106
- M. Sambath and K. Balachandran, Influence of diffusion on bio-chemical reaction of the morphogenesis process, Journal of Applied Nonlinear Dynamics, 4 (2015) 181-195. https://doi.org/10.5890/JAND.2015.06.007
- M. Sambath, K Balachandran and M Suvinthra, Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality, Complexity, 21 (2016) 34-43. https://doi.org/10.1002/cplx.21708
- M. Sambath and R. Sahadevan, Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response, Journal of Mathematical Modeling, 5 (2017) 119-136.
- X. Li, W. Jiang and J. Shi, Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math (2011) 1-20.
- M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. Math. Anal. Appl. 295 (2004) 15-39. https://doi.org/10.1016/j.jmaa.2004.02.038
- H.B. Shi, W. Tong Li and G. Lin, Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response, Nonlinear Anal. RWA. 11 (2010) 3711-3721. https://doi.org/10.1016/j.nonrwa.2010.02.001
- B.D. Hassard, N.D. Kazarinoff and Y.H. Wan, Theory and Applications of Hopf Bifurcation. Camb. Univ. Press, Cambridge, (1981).