• Title/Summary/Keyword: Equal Stiffness

Search Result 93, Processing Time 0.019 seconds

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

Vector algorithm for reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.125-139
    • /
    • 1994
  • A vector algorithm for calculating the stiffness matrices of reinforced concrete shell elements is presented. The algorithm is based on establishing vector lengths equal to the number of elements. The computational efficiency of the proposed algorithm is assessed on a Cray Y-MP supercomputer. It is shown that the vector algorithm achieves scalar-to-vector speedup of 1.7 to 7.6 on three moderate sized inelastic problems.

Influence of Bearing Stiffness on the Static Properties of a Planetary Gear System with Manufacturing Errors

  • Cheon, Gill-Jeong;Parker, Robert, G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1978-1988
    • /
    • 2004
  • Hybrid finite element analysis was used to analyze the influence of bearing stiffness on the static properties of a planetary gear system with manufacturing errors. The effects of changes in stiffness were similar for most of the manufacturing errors. State variables were most affected by the stiffness of the planet ,bearings. Floating either the sun or carrier helps to equal load sharing and minimizes the critical tooth stress. The effects of a floating sun and carrier are similar, but it is not recommended that both float, because this can induce greater critical tooth stress. Planet bearing stiffness should be optimized. Both load sharing and critical tooth stress should be considered to determine optimal bearing stiffness.

Vector Algorithm for RC Shell Element Stiffness Matrix (철근콘크리트 쉘 요소의 강성행렬 계산을 위한 벡터알고리즘)

  • ;A. K. Gupta
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.25-30
    • /
    • 1994
  • A vector algorithm for calculating the stiffness matrices of reinforced concrete shell elements is presented. The algorithm is based on establishing vector lengths equal to the number of elements. The computational efficiency of the proposed algorithm is assessed on a Cray Y-MP supercomputer. It is shown that the vector algorithm achieves scalar-to-vector speedup of 1.7 to 7.6 on three inelastic problems.

  • PDF

Static Analysis of Two Dimensional Curbed Beam Structure by Finite Element-Transfer Stiffness Coefficent Method (유한요소-전달강성계수법에 의한 2차원 곡선 보 구조물의 정적해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • The objective of this study is the finite element-transfer stiffness coefficient method, which is the combination of the modeling technique of finite element method and the transfer technique of transfer stiffness coefficient method, is applied in the static analyses of two dimensional curved beam structures. To confirm the effectiveness of the applied method, two computational models are selected and analyzed by using finite element method, finite element-transfer stiffness coefficient method and exact solution. The computational results of the static analyses for two computational models using finite element-transfer stiffness coefficient method are equal to those using finite element method. When the element partition number of curved beam structure is increased, the computational results of the static analyses using both methods approach the exact solution. We confirmed that the finite element-transfer stiffness coefficient method is superior to finite element method when the number of the curved beam elements is increased from the viewpoints of the computational speed and the utility of computer memory.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.

A Study for Mutual Interference between Symmetric Circular Inclusion and Crack in Finite Width Plate by Boundary Element Method (경계요소법에 의한 유한폭 판재내의 대칭 원형함유물과 균열의 상호간섭에 대한 연구)

  • Park, S.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.137-145
    • /
    • 1997
  • A two-dimensional program for the analysis of bimaterial inclusion has been developed using the bound- ary element method. In order to study the effects of circular inclusion on the stress field of the crack tip, numerical analysis was performed for the straight crack of finite length around the symmetric circular inclusion whose modulus of elasticity was different from that of the matrix material. In the case of inclusion whose stiffness was smaller than that of the matrix material, the stress intensity factor was found to increase as the crack enamated. The stress intensity factor was uninfluenced from the radial change in inclusion and remained constant for the stiffness equivalent to the matrix materials, where as it decreased for the inclusion with larger stiffness. For the vareation in the distance of the inclusion, a small increase in the stress intensity factor was observed for the case with small or equal stiffness compared with the matrix materials. The inclusion with larger stiffness showed a gradual decrease in the strss intensity factor as the crack emanated.

  • PDF

Preliminary Development of Pinwheel Model Created by Convergent Truss Structure with Biological DNA Structure (생물학적 DNA 구조와 트러스구조의 융합으로 개발한 바람개비형 모델 선행연구)

  • Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.181-190
    • /
    • 2016
  • The objective of this study is to find the effective stiffness and compressive strengths of a unit-cell pinwheel truss and double pinwheel truss model designed following a double helical geometry similar to that of the DNA (deoxyribonucleic acid) structure in biology. The ideal solution for their derived relative density is correlated with a ratio of the truss thickness and length. To validate the relative stiffness or relative strength, ABAQUS software is used for the computational model analysis on five models having a different size of truss diameter from 1mm to 5mm. Applied material properties are stainless steel type 304. The boundary conditions applied were fixed bottom and 5 mm downward displacement. It was assumed that the width, length, and height are all equal. Consequently, it is found that the truss model has a lower effective stiffness and a lower effective yielding strength.

Buckling Analysis of Corrugated Board using Finite Element Method (유한요소법에 의한 Corrugated Board의 휨 발란스 해석)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.

Dynamic Stiffness and Frequency Response Analysis for the Development of Magnesium Oil Pans (마그네슘 합금 오일팬 개발을 위한 동적 강성 및 주파수 응답 해석)

  • Shin, Hyun-Woo;Chung, Yeon-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.141-149
    • /
    • 2009
  • The oil pan is an important factor for the noise behavior of the engine system. In this paper a new Magnesium oil pan was designed and analyzed to replace the current Aluminium oil pan. Dynamic stiffness and sound pressure level of the newly designed Mg oil pan were compared with the AI oil pan using the finite element method. NVH characteristics of the Mg oil pan is slightly insufficient when we changed the material of the oil pan from Al to Mg without modifying the design. Some design modifications of the Mg oil pan resulted in equal or superior characteristics compared to the Al oil pan. New ribs were added to stiffen the structure of the Mg oil pan. Thickness of thin plate area was increased to reduce the radiated noise. Through the changes of shape, higher dynamic stiffness than the current Al oil pan were achieved. Results of frequency response analysis show that we can reduce the sound pressure level of the oil pan if we increase the thickness of the thin plate area. It is shown that the new Mg oil pan could reduce the weight of the engine system and improve NVH quality of an automobile.