• Title/Summary/Keyword: Epoxy paint

Search Result 53, Processing Time 0.023 seconds

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

Sensitivity Measurement of the Piezoelectric Paint Sensor according to the Poling Electric Field (분극 전계에 따른 압전 페인트 센서 감도 측정)

  • Han, Dae-Hyun;Park, Seung-Bok;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.146-151
    • /
    • 2014
  • In this study, the experimental study has been performed by varying the polarization of the electric field and impact force to check the piezoelectric characteristics of piezoelectric paint sensor. Piezoelectric paint sensor used in this study is composed of epoxy resin with a hardener and PNN-PZT powder in 1:1 weight ratio. The dimensions of the paint sensor specimen are $40{\times}40{\times}1mm^3$ and regular specimens were made using a mold. The voids are removed from the specimen in the vacuum desiccator. Both upper side and bottom side of the paint sensor were coated with silver paste for making an electrode and then dried at room temperature for a day. The poling treatment has been carried out under controlled conditions of the electric field in order to check the effect of piezoelectric sensitivities, while the poling temperature was fixed at room temperature and the poling time was set to 30 min. The piezoelectric sensitivities have been measured by comparing output voltage from paint sensor with output force from impact hammer when the impact hammer hits the paint sensor. In result, the effect of the electric field has been evaluated for the sensitivity and describe the result.

Development of Time Domain Reflectometry Probe for Evaluation of Copper Concentration in Saline Environment (염수환경에서의 구리 농도 평가를 위한 Time Domain Reflectometry 프로브 개발)

  • Lee, Dongsoo;Lee, Jong-Sub;Hong, Won-Taek;Yu, Jung-Doung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.15-24
    • /
    • 2018
  • As electromagnetic waves are affected by electrical conductivity or permittivity, they are widely used to evaluate geotechnical characteristics. In this study, a probe for measuring electromagnetic waves using a time domain reflectometry is manufactured to evaluate heavy metal concentration in saline water. In the experiments, a copper is used as a heavy metal, and a probe is demonstrated with the concentration of copper. Solutions were set for 8 different copper concentration (0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10 mg/L) in saline water with 3% salinity. The probe is coated by electrical insulating materials such as epoxy, top-coat, varnish, acrylic paint, heat-shrinkage tube to measure electromagnetic waves in saline water. The measured signals are compared according to coating material. As results, for probes coated with acrylic paint and heat-shrinkage tube, signal variation is not detected. For epoxy, top-coat, and varnish coated probes, the voltage decreases with an increase of copper concentration. Probes coated by epoxy at once and top coat can estimate under 5 mg/L of copper concentration and the probe coated by epoxy twice can estimate over 5 mg/L of copper concentration. This study shows that the probe using the time domain reflectometry can be used to evaluate the concentration of heavy metal in saline water by coating the probe with insulating material.

Electrochemical Evaluation on Corrosion Resistance of Anti-corrosive Paints

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.387-394
    • /
    • 2009
  • It has been observed that coated steel structures are rapidly deteriorated than designed lifetime due to acid rain caused by air pollution etc.. Therefore improvement of corrosion resistance of anti-corrosive paint is very important in terms of safety and economic point of view. In this study corrosion resistance for five kinds of anti-corrosive paints including acryl, fluorine and epoxy resin series were investigated with electrochemical methods such as corrosion potential, polarization curves, impedance and cyclic voltammogram measurements etc.. There were somewhat good relationships between values measured by electrochemical methods such as corrosion current density obtained by cathodic and anodic polarization curves, value of impedance estimated with AC impedance, and polarization resistance on the cyclic voltammogram, for example, corrosion current density was decreased with increasing of values of impedance and polarization resistance on the cyclic voltammogram. However their relationships between corrosion current density and corrosion potential were not well coincided each other. Consequently it is considered that although a corrosion potential of F101 of fuoric resin series shifted to negative direction than other anti-corrosive paints, its corrosion resistance, indicating on the cathodic and anodic polarization curves, AC impedance curves and cyclic voltammogram, was the most superior to other paints, whereas A100 containing arcylic resin showed a relatively poor corrosion resistance compared to other paints.

Exposure Characteristics of Construction Painters to Organic Solvents

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-Kil
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Background: Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods: Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results: As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxyprimer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50e100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion: From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction workers need to be protected from chemical agents during their painting works by using personal protective devices and/or work practice measures. Additional studies should focus on the exposure assessment of other hazards for construction workers, in order to identify high-risk tasks and to improve hazardous work environments.

A study on improvement of painting quality through a de-painting phenomenon of KUH-1 tail blade (한국형 기동헬기 꼬리 날개 디페인팅 현상을 통한 도장 품질 향상에 관한 연구)

  • Chang, In-Ki;Kim, Young-Jin;Seo, Hyun-Soo;Jeon, Boo-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.325-338
    • /
    • 2014
  • Purpose: The purpose of this study was to explain de-painting phenomenon of KUH-1 tail blade and to propose useful solution of it by test. The proposed solution was evaluated by real flight, and then it applied to mass product to improve the paint qual ity of KUH-1 tail blade. Methods: This study investigated an adhesive ability of primer following surface sanding condition. The cross cut and scratch test were conducted to evaluate the adhesive strength. And the water flow test was designed to simulate a real flight condition under rain. Through water flow test, an optimal condition of tail blade to prevent a de-painting phenomenon was deduced. Finally, the improvement method was evaluated by real flight under rain. Results: The results of this study are as follows; The sequential polishing was most excellent method in primer painting quality. The results of test including cross cut, scratch and water flow showed that MIL-DTL-53039 paint with epoxy primer has excellent adhesive ability. To proof the effect of improvement, a real flight during a rain condition was conducted. Finally, the comparison between original and improved configuration was conducted. Conclusion: The painting quality of KUH-1 tail blade was improved through deriving an optimal painting condition. In detail, a condition of optimal sanding and a sort of primer and paint was showed. Finally, the reliability of tail blade was guaranteed through improving the quality of painting.

Development and Performance Evaluation of Anti-cavitation Paint with a Lamella Glass-flake (판상형 Glass-flake를 이용한 내캐비테이션 도료 개발 및 성능평가)

  • Park, Hyeyoung;Kim, Sung-gil;Kim, Sang-suk;Choi, I-chan;Kim, Byungwoo;Kim, Seung-jin
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • In response to the cavitation caused by the partial vacuum caused by the fluid flow, a paint was developed by dispersing the lamella-shaped glass-flake in resin for anti-cavitation. This composite paint was developed by using the inorganic filler (lamella shaped glass-flake) and the NBR (Acrylonitrile-butadiene rubber) which was modified epoxy resin. Especially, the glass-flake was a thin film with a thickness of about 100~200 nm and length of about $20{\sim}30{\mu}m$, the aspect ratio was about 200 to 300 times that of the plate-shaped. So the paint for anti-cavitation have shown excellent performance in corrosion resistance. The results of evaluating anti-cavitation performance was below, tensile strength $4.8{\sim}6N/mm^2$ or more, rupture elongation 30% or higher, abrasive speed $10mm^2/h$ or less. In particular, it showed more than twice the superior performance compared to existing advanced foreign products in anti-cavitation performance evaluation.

A Study on Coating Performance Design for Ice Belt Zone of the Arctic Vessels (극지 운항 선박 Ice Belt Zone의 도장 사양 설계 연구)

  • Baek, Yun-Ho;Park, Chung-Seo;So, Yong-Shin
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.66-72
    • /
    • 2013
  • The demand for an ice class ship is rising expected to rise according to the increase of energy consumption and the opening of arctic sea routes. Ice class ship should be designed to cope with the severe environmental conditions of arctic sea such as a high mechanical impact and abrasion damage, caused by pack ice, ice bergs and low temperature. The ice class ship hulls are coated with an anti-abrasion and low friction coating such as a solvent free epoxy or high solid-volume epoxy. These coatings require two-component heating pump and a high grade surface preparation. In this study, the coating performances for the arctic vessels, such as puncture absorbed energy, abrasive wear loss, friction coefficients and impact absorbed energy were evaluated. Based on this study, a proper coating performance specification for the arctic vessels was proposed and coating selection guideline in terms of coating performance and workability was also established.

  • PDF

Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

  • Baek, Kwang Ki;Park, Chung Seo;Kim, Ki Hong;Chung, Mong Kyu;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities.

A Study on the Improvement of Multi-Layer Coating Method on Concrete Base (성형 콘크리트 복층마감도장 공법 개선에 관한 연구)

  • Kim, Chong-Weon;Choi, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.93-105
    • /
    • 2003
  • The Precast Concrete(PC) method was developed for a large production of a structure in Europe. Afterwards, this PC method has been applied to a structure and an outside Coating of buildings extensively. The outside Coating of the building applied this PC method is a method to put tiles or stones to base concrete. And there is a method to use paints for, so the expression of various patterns is possible. The Multi-Layer Coating is one of the methods to use paints. This Multi-Layer Coating method can show various designs of external appearance with Foam when it is made with the PC panel. Also, the paint film of the PC panel enables a splendid appearance, and a protective function of concrete is possible, too. Therefore, it makes good durability of the PC. Besides, maintenance is easy to manage because it is free from pollution when it uses metallic materials, stones, or any other materials. You might have no trouble in applying the Multi-Layer Coating method in order to save a merit of an outside Coating on the PC panel. However, the Multi-Layer Coating method used as a current outside Coating method has pollution and bad working environment because Oil Epoxy Resins have toxicity and flammability. Therefore, a lot of warnings are required for coating work in order to have appropriate quality because working hours are short, and production efficiency is low too. These reasons make the cost of construction of the Multi-Layer Coating method increase. And employers or designers may have problems in selecting this Multi-Layer Coating method. Therefore, the purpose of this study is to get activation of the Multi-Layer Coating method by offering improvement measures about the problems of the existing Multi-Layer Coating method.