• 제목/요약/키워드: Epoxy matrix

검색결과 414건 처리시간 0.021초

LCD 컬러 필터용 알칼리 가용성, 감광성 폴리에스터의 합성과 물성 (Synthesis and Properties of Alkali-Soluble and Photosensitive Polyester Derivatives for LCD Color-Filter)

  • 이상훈;조영곤;김주성;배진영
    • 폴리머
    • /
    • 제31권5호
    • /
    • pp.442-446
    • /
    • 2007
  • 알칼리 가용성, 광경화형 폴리에스터를 합성하기 위해 플루오렌형 에폭시 아크릴레이트에 다양한 산 2 무 수물을 반응시켰다. LCD (liquid crystal display) 컬러 필터용 블랙매트릭스를 제조하기 위해서 합성된 폴리에스터와 카본블랙 등을 혼합하여 포토레지스트 용액을 조제한 후 리소그래피 공정을 통해 유리 기판 위에 블랙매트릭스패턴을 형성하였다. 합성된 다양한 폴리에스터의 특성과 리소그래피 패턴을 비교 조사하였다.

Highly Thermal Conductive Alumina Plate/Epoxy Composite for Electronic Packaging

  • Jeong, Un Seong;Lee, Yoon Joo;Shin, Dong Geun;Lim, Hyung Mi;Mun, So Youn;Kwon, Woo Teck;Kim, Soo Ryong;Kim, Young Hee;Shim, Kwang Bo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권6호
    • /
    • pp.351-354
    • /
    • 2015
  • In this study, alumina plates 9~25 μm in size were used as thermal fillers, and epoxy resin was used as a polymer matrix. Oriented alumina plate/epoxy composites were prepared using a rolling method. The effect of ordering alumina plates increased with alumina plate size. The thermal conductivity and flexural strength of the composites were investigated. The horizontal thermal conductivity of the oriented composite was significantly higher than the vertical thermal conductivity. The horizontal thermal conductivity of the 75 wt% alumina content was 8.78 W/mk, although the vertical thermal conductivity was 1.04 W/mk. Ordering of the alumina plate using a rolling method significantly improved the thermal conductivity in the horizontal direction. The flexural strengths of the ordered alumina/epoxy composites prepared at different curing temperatures were measured.

에폭시 수지 적용 아라미드 및 탄소섬유 복합재료의 물성연구 (Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Materials)

  • 서대경;하나라;이장훈;박현규;배진석
    • 한국염색가공학회지
    • /
    • 제27권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, super fiber reinforced composite materials are widely used in many industries due to high mechanical properties. In this study, 2 different types of composite materials were manufactured in order to compare their mechanical properties. Carbon and Aramid fibers were used for reinforcement materials and Bisphenol-A type epoxy resin was for matrix. Two kinds of fiber-reinforced materials were manufactured by RIM(Resin Injection Molding) method. Before manufacturing composite materials, the optimal manufacturing and curing process condition were established and the ratio of reinforcement to epoxy resin was discussed. FT-IR analysis was conducted to clarify the structure of epoxy resin. Thermal and mechanical property test were also carried out. The cross-section of composite materials was observed using a scanning electron microscope(SEM).

에폭시/구상실리카 콤포지트의 전기적 절연파괴 및 인장 강도 특성 연구 (A Study on Electrical Insulation Breakdown and Tensile Strength for Epoxy/Spherical Silica Composites)

  • 이승훈
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.726-730
    • /
    • 2013
  • In order to develop a high voltage insulation material, spherical silicas with two average particle sizes of 5 ${\mu}m$ and 20 ${\mu}m$ were mixed in different mixing ratios (1:0, 0.7:0.3, 0.5:0.5, 0.3:0.7, 0:1) and their total filling content was fixed at 65 wt%. In order to observe the dispersion of the spherical silicas and the interfacial morphology between silica and epoxy matrix, field emission scanning electron microscope (FE-SEM) was used. The electrical insulation breakdown strength was estimated in sphere-plate electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of 5/20 ${\mu}m$ and the thickness dependence of the breakdown strength was also observed. The tensile strength of the neat epoxy was 82.8 MPa as average value and its increased with decreasing particles size and that of epoxy/silica (2 ${\mu}m$) was 107 MPa, which was 130.8% higher value.

Mechanical properties of bamboo-epoxy composites a structural application

  • Biswas, Sandhyarani
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.221-231
    • /
    • 2012
  • In this study, the physical and mechanical properties of bamboo fiber reinforced epoxy composites were studied. Composites were fabricated using short bamboo fiber at four different fiber loading (0 wt%, 15 wt%, 30 wt% and 45 wt%). It has been observed that few properties increases significantly with respect to fiber loading, however properties like void fraction increases from 1.71% to 5.69% with the increase in fiber loading. Hence, in order to reduce the void fraction, improve hardness and other mechanical properties silicon carbide (SiC) filler is added in bamboo fiber reinforced epoxy composites at four different weight percentages (0 wt%, 5 wt%, 10 wt% and 15 wt%) by keeping fiber loading constant (45 wt%). The significant improvement of hardness (from 46 to 57 Hv) at 15 wt%SiC, tensile strength (from 10.48 to 13.44 MPa) at 10 wt% SiC, flexural strength (from 19.93 to 29.53 MPa) at 5 wt%SiC and reduction of void fraction (from 5.69 to 3.91%) at 5 wt%SiC is observed. The results of this study indicate that using particulate filled bamboo fiber reinforced epoxy composites could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional bamboo composites. Finally, SEM studies were carried out to evaluate fibre/matrix interactions.

전도성 구리충전제/에폭시수지 복합체의 전기적 특성 (Electrical Properties of Conductive Copper Filler/Epoxy Resin Composites)

  • 이정은;박영희;오승민;임덕점;오대희
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.472-479
    • /
    • 2013
  • The conductive polymer composites recently became increasingly to many fields of industry due to their electrical properties. To understand these properties of composites, electrical properties were measured and were studied relatively. Electrical conductivity measurements showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in composites made of a conductive filler and an insulating matrix. It has been showed both experimentally and theoretically that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. This paper was to study epoxy resin filled with copper. The experiment was made with vehicle such as epoxy resin replenished with copper powder and the study about their practical use was performed in order to apply to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 3.065~13.325 in using copper powder. The weight loss of conductive composites happened from $350^{\circ}C{\sim}470^{\circ}C$.

Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites

  • Lim, Jae Il;Rhee, Kyong Yop;Kim, Hyun Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.125-128
    • /
    • 2014
  • In this study, the effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites was investigated. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. Fracture tests were conducted and the fracture surfaces of the carbon/basalt/epoxy hybrid composites were then examined using scanning electron microscopy (SEM). The results showed that the flexural strength and flexural modulus of the CSBC specimen respectively were ~32% and ~245% greater than those of the BSCC specimen. However, the interlaminar fracture toughness of the CSBC specimen was ~10% smaller than that of the BSCC specimen. SEM results on the fracture surface showed that matrix cracking is a dominant fracture mechanism for the CSBC specimen while interfacial debonding between fibers and epoxy resin is a dominant fracture process for the BSCC specimen.

전도성 니켈분말-에폭시수지 복합체의 전기적 특성 (Electrical Properties of Conductive Nickel Powder-Epoxy Resin Composites)

  • 오대희;임덕점;이정은;박영희;오승민
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.329-336
    • /
    • 2014
  • The conductive polymer composites have attracted considerable attention in the field of industry due to their electrical properties. To understand electrical properties of the composites, their volume specific resistance was measured. Electrical conductivity results showed percolation phenomena. Percolation theories are frequently applied to describe the insulator-to-conductor transitions in the composites composed of conductive filler and insulating matrix. It was found that the percolation threshold strongly depends on the aspect ratio of filler particles. The critical concentration of percolation formed is defined as the percolation threshold. The purpose of this study was to examine electrical properties of the epoxy resins filled with nickel. The sample was prepared using vehicle such as epoxy resin replenished with nickel powder, and the evaluation on their practical use was performed in order to apply them to electric and electronic industry as well as general field. The volume specific resistance of epoxy resin composites was 4.666~13.074 when using nickel powder. Weight loss of the conductive composites took place at $350^{\circ}C{\sim}470^{\circ}C$.

炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究 (A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite)

  • 윤성호;홍창선
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.198-207
    • /
    • 1986
  • 본 연구에서는 Fig.1과 같이 시편 부위에 균일응력분포가 작용하도록 M.Arcan 등에 의해 제시된 비대칭형상의 시편고정물에 층간균열을 가진 시편을 부착한 다음 하중각도를 바꾸어가며 모우드 II뿐 아니라 혼합모우드 및 모우드 I까지도 실험 할 수 있는 실험장치를 사용하여 균열면에서의 섬유방향이 〔0/0〕이고 초기균열길이비가 0.4, 0.5, 0.6인 시편의 모우드I, 혼합모우드 및 모우드II 층간파괴인 성치들을 실험 적으로 구해 혼합모우드 파괴결정조건식들에 적용시켜 보았다. 또한 균열면에서의 섬유방향이 〔0/0〕, 〔0/30〕, 〔0/45〕및 〔0/60〕인 경우의 층간파괴인성치와 이때 의 파괴현상에 대해 관찰하였다.

Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate

  • Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.334-338
    • /
    • 2009
  • Trifunctional epoxy resin triglycidyl paraaminophenol (TGPAP)/$CaCO_3$ nanocomposites were prepared using the melt blending method. The effects of nano-$CaCO_3$ content on the thermal behaviors, such as cure behavior, glass transition temperature ($T_g$), thermal stability, and the coefficient of thermal extension (CTE), were investigated by several techniques. Differential scanning calorimetry (DSC) results indicated that the cure reaction of the TGPAP epoxy resin was accelerated with the addition of nano-$CaCO_3$. When the nano-$CaCO_3$ content was increased, the $T_g$ of the TGPAP/$CaCO_3$ nanocomposites did not obviously change, whereas the crosslinking density was linearly increased. The nanocomposites showed a higher thermal stability than that of the neat epoxy resin. This result could be attributed to the increased surface contact area between the nano-$CaCO_3$ particles and the epoxy matrix, as well as the high crosslinking density in the TGPAP/$CaCO_3$ nanocomposites. The CTE of the nanocomposites in the rubbery region was significantly decreased as the nano-$CaCO_3$ content was increased.