• Title/Summary/Keyword: Epoxy composites

Search Result 1,049, Processing Time 0.031 seconds

Blade Development and Test of WinDS$3000^{TM}$ System (WinDS$3000^{TM}$ 시스템의 블레이드 개발 및 시험)

  • Lee, Sang-Il;Lee, Kyeong-Woo;Joo, Wan-Don;Lee, Ki-Hak;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.448-448
    • /
    • 2009
  • A new blade has been developed to apply to Doosan 3MW offshore wind turbine named as WinDS3000TM. The 3MW blade has been designed by the concept of slim external shape and optimized structure. High-performance glass fiber reinforced epoxy composites were used as the main material of the blade. The blade was manufactured using vacuum infusion process in order to increase the fiber volume fraction and to reduce micro-porosities. The blade has successfully passed the full-scale blade static test for certification. During the test, micro-failure signal and strain change of the blade were measured using acoustic emission sensors and strain gages. The blade has robust structure and weighs lighter compared to conventional blade since the new blade was designed by optimization process. The 3MW blade will be commercially applied to WinDS$3000^{TM}$ in 2010.

  • PDF

Thermally-Expandable Molding Process for Thermoset Composite Materials (열팽창 치공구를 이용한 열경화성 복합재료의 성형연구)

  • 이준호;금성우;장원영;남재도
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.690-700
    • /
    • 2000
  • In this study, an elastomer-assistered compression molding process was investigated by experiments as well as modeling for the long-fiber reinforced thermoset composites. The consolidation pressure generated by fixed-volume and variable-volume conditions was thermodynamically derived for both elastomer and curing prepregs, and was compared with the pressure measured during curing of epoxy matrix. Exhibiting non-linear viscoelastic characteristics in the compressive stress-strain tests, the measured stress was well compared with a modifed KWW (Kohlrausch-Williame-Watts) equation, which is based on the Maxwell viscoelastic model. Using the developed model equations, the consolidation pressure generated by the elastomer was successfully predicted for the compression molding process of thermoset composite materials in tile closed mold system.

  • PDF

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

The Investigation of Rheological Properties Development for Polymer Matrix Including Foaming Agent

  • Lee, Seung Hak;Kim, Dong Gun;Lim, Sung Wook;Park, Eun Young;Park, Tae Sun;Hyun, Kyu
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • Sole in the footwear usually modified with foaming agent on the polymer resin to improve the lightweightness and crush-cushion effect. In this study, we investigated rheological properties for polymer resin filled with the different type and concentration of foaming agent, capsule type foaming agent and organo-chemical foaming agent, under the time sweep test. Curing times of each polymer resin with different kind of foaming agent are delayed than reference material (epoxy resin with curing agent). In case of adding capsule type foaming agent, however, there is appropriate concentration to reduce the curing time, relatively. When foaming agent is activated, foaming force inflates the sample in contrast to condensation force of curing and then axial normal force develop to the (+) direction. Interestingly, by increase concentration of foaming agent, there is a specific point to break down the axial normal force development. The reason for this phenomenon is that coalescence of foams induce the blocking of axial normal force development.

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Evaluation of energy release rate of composites laminated with finite element method

  • Achache, Habib;Boutabout, Benali;Benzerdjeb, Abdelouahab;Ouinas, Djamel
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.191-204
    • /
    • 2015
  • Control of the mechanical behavior of composite materials and structures under monotonic and dynamic loads for cracks and damage is a vast and complex area of research. The modeling of the different physical phenomena and behavior characteristics of a composite material during deformation play an important role in the structural design. Our study aims to analyze numerically the energy release rate parameter G of a composite laminated plate (glass or boron / epoxy) cross-ply [$+{\alpha}$, $-{\alpha}$] in the presence of a crack between two circular notches under the effect of several parameters such as fiber orientation ${\alpha}$, the crack orientation ${\beta}$, the orientation ${\gamma}$ of the two considered circular notches and the effect of mechanical properties. Our results show clearly that both notches orientation has more effect on G than the cracks and fibers orientations.

Composite $BaTiO_3$ Embedded capacitors in Multilayer Printed Circuit Board (다층 PCB에서의 $BaTiO_3$ 세라믹 Embedded capacitors)

  • You, Hee-Wook;Park, Yong-Jun;Koh, Jung-Hyuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.110-113
    • /
    • 2008
  • Embedded capacitor technology is one of the effective packing technologies for further miniaturization and higher performance of electric packaging system. In this paper, the embedded capacitors were simulated and fabricated in 8-layered printed circuit board employing standard PCB processes. The composites of barium titanante($BaTiO_3$) powder and epoxy resin were employed for the dielectric materials in embedded capacitors. Theoretical considerations regarding the embedded capacitors have been paid to understand the frequency dependent impedance behavior. Frequency dependent impedance of simulated and fabricated embedded capacitors was investigated. Fabricated embedded capacitors have lower self resonance frequency values than that of the simulated embedded capacitors due to the increased parasitic inductance values. Frequency dependent capacitances of fabricated embedded capacitors were well matched with those of simulated embedded capacitors from the 100MHz to 10GHz range. Quality factor of 20 was observed and simulated at 2GHz range in the 10 pF embedded capacitors. Temperature dependent capacitance of fabricated embedded capacitors was presented.

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

Preparation of Epoxidized Soft Terpolymers and Their Reactive Compatibilizing Effects on PP/EVOH Blends

  • Kim, Jung Soo;Jeon, Dong Gyu;Jang, Ji Hoon;Kim, Jin Hoon;Kim, Ki Bum;Yang, Hong Joo;Park, Jun Sung;Lee, Youn Suk;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.50 no.3
    • /
    • pp.189-195
    • /
    • 2015
  • In this study, we prepared epoxidized poly ethylene-ter-1-decene-ter-divinylbenzene (Epo-PEHV) as a reactive compatibilizer to prevent phase separation phenomenon which occurs upon blending polypropylene (PP) and ethylene-vinyl alcohol copolymer (EVOH). Firstly, PEHV was prepared under high catalyst activity according to content of catalyst and cocatalyst. After then, we modified vinyl group of the terpolymer with epoxy group. We observed that the terpolymer was successfully epoxidized by 1H-NMR and FT-IR analysis. The Epo-PEHV was added by 2, 5, 10% in PP/EVOH blends. The morphologies and mechanical properties of PP/Epo-PEHV/EVOH blends were analyzed by SEM and UTM, respectively. Epo-PEHV enhanced the interfacial adhesion of PP and EVOH blends.

Phase Inversion Emulsification and Enhancement of Physical Properties for Cationic Emulsified Asphalt

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • In this work, the emulsified asphalt with high phase stability and storage stability was prepared by using phase inversion emulsification and the surfactant mixed with cationic and nonionic surfactants. It was found that the asphalt together with Span 20, nonionic surfactant and DDA (Dimethyl Dodecyl Amine), cationic surfactant showed the most stable phase. The phase stability of the emulsified asphalt, therefore, was investigated through the particle size with mixed surfactant content, rheology behavior and Zeta potential value; the particle size decreased with the increase of the mixed surfactant content but the viscosity increased. The shear thinning behaviors and the Zeta potential value with 50 mV~60 mV were shown, which was found to be considered stable. In addition, SBR latex(Styrene-butadiene-rubber) and water dispersed Epoxy (EPD) were used to enhance the physical properties of the emulsified asphalt. The swelling and adhesion features of the emulsified asphalt were also studied with $CaCO_3$, Silica, and Montmorillonite (MMT). It was shown that the addition of SBR latex and MMT can be another way to improve the physical properties of the emulsified asphalt in that the lowest swelling feature was found.