• Title/Summary/Keyword: Epoxy composites

Search Result 1,050, Processing Time 0.031 seconds

Evaluation of Nondestructive Damage Sensitivity on Single-Basalt Fiber/Epoxy Composites using Micromechanical Test and Acoustic Emission with PZT and PVDF Sensors (PZT 및 PVDF 센서에 따른 음향방출과 Micromechanical 시험법을 이용한 단일 Basalt 섬유 강화 에폭시 복합재료의 비파괴 손상감지능 평가)

  • Kim, Dae-Sik;Park, Joung-Man;Jung, Jin-Kyu;Kong, Jin-Woo;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.61-67
    • /
    • 2004
  • Nondestructive damage sensitivity on single-basalt fiber/epoxy composites was evaluated by micromechanical technique and acoustic emission (AE). Piezoelectric lead-zirconate-titanate (PZT), polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer were used as AE sensor, respectively. In single-fiber composite, the damage sensing with different sensor types were compared to each other. Piezoelectric PVDF polymer sensor was embedded in and attached on the composite, whereas PZT sensor was only attached on the surface of specimen. In case of embedded polymer sensors, responding sensitivity was higher than that of the attached case. It can be due to full constraint inside specimen to transfer elastic wave coming from micro-deformation. For both the attached and the embedded cases, the sensitivity of P(VDF-TrFE) sensor was almost same as that of conventional PVDF sensor.

A Study on Tensile Properties of CFRP Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구)

  • Kim Myung-Gon;Kang Sang-Guk;Kim Chun-Gon;Kong Cheol-Won
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2004
  • In this study, mechanical tensile properties of carbon fiber reinforced polymeric (CFRP) composite cycled with thermo-mechanical loading under cryogenic temperature (CT) were measured using cryogenic environmental chamber. Thermo-mechanical tensile cyclic loading (up to 10 times) was applied to graphite/epoxy unidirectional laminate composites far room temperature (RT) to $-50^{\circ}C$, RT to $-100^{\circ}C$ and RT to $-150^{\circ}C$. Results showed that tensile stiffness obviously increased as temperature decreased while the thermo-mechanical cycling has little influence on it. Tensile strength, however, decreased as temperature down to CT while the reduction of strength showed little after CT-cycling. For the analysis of the test results, coefficient of thermal expansion (CTE) of laminate composite specimen at both RT and CT were measured and the interface between fiber and matrix was observed using SEM images.

Mechanical Properties of VARTM Processed Abaca Fabric Composites (VARTM 공정으로 성형된 Abaca 패브릭 복합재의 기계적 특성평가)

  • Byun, Gill Jae;Ha, Jong-Rok;Kim, Byung-Sun;Joe, Chee Ryong;Ok, Ju Seon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.198-204
    • /
    • 2012
  • The objective of this study is to improve the mechanical properties in abaca fabric/epoxy composites produced using a VARTM process. The mechanical properties were improved by increasing the surface roughness of the fabric through plasma polymerization and improving the interfacial adhesion between the epoxy and the fabric through changing its hydrophilic properties to the hydrophobic properties. Plasma polymerization at atmospheric pressure and room temperature was used, and the optimal polymerization time to improve the mechanical properties was investigated. NaOH treatment on the fabric was also carried out for the comparison. The composite fabricated using the fabric polymerized for 10 seconds shows the highest tensile strength compared to that of none-polymerized or NaOH treated. Plasma polymerization for more than 20 seconds exhibits decrease in the tensile strength. As a result, the plasma polymerization for more than 20 seconds may have caused some damages on the surface of the fabrics. Also, the hydrophilic abaca represents a tendency of presenting the hydrophobic properties in absorption and sedimentation tests.

Characteristic Analysis of Falling Weight Impact Response in CF/Epoxy Composite Plates Using Frequency Responses (주파수 응답을 이용한 CF/Epoxy 복합적층판의 낙추충격 특성평가)

  • 임광희;박노식;김영남;김선규;양인영
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2003
  • We have implemented a system of falling weight impact tester in order to evaluate the impact energy absorbing characteristics and impact strength of CFRP laminate plates. The absorbed energy of T-300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T-300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen however there was no big difference in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses were evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

A Study on the Crashworthiness Evaluation and Performance Improvement of Tilting Train Carbody Structure made of Sandwich Composites (틸팅열차의 샌드위치 복합재 차체 구조물에 대한 충돌안전도 평가 및 향상방안 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Han, Sung-Ho
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • This paper describes the crashworthiness evaluation and performance improvement of tilting train made of sandwich composites. The applied sandwich composite of carbody structure was composed of aluminum honeycomb core and glass/epoxy & carbon/epoxy laminate composite facesheet. Crashworthiness analysis of tilting train was carried out using explicit finite element analysis code LS-DYNA 3D. The 3D finite element model and 1D equivalent model were applied to save the finite element modeling and calculation time for crash analysis. The crash conditions of tilting train were conducted according to four crash scenarios of the Korean railway safety law. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure was proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

Evaluation of Mechanical and Electrical Properties of Bipolar Plate Made of Fiber-reinforced Composites for PEM Fuel Cell (섬유강화 복합재를 사용한 PEM 연료전지 분리판의 전기적.기계적 특성 평가)

  • Lee, Hee-Sub;Ahn, Sung-Hoon;Jeon, Ui-Sik;Ahn, Sang-Yeoul;Ahn, Byung-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.39-46
    • /
    • 2006
  • The fuel cell is one of promising environment-friendly energy sources for the next generation. The bipolar plate is a major component of the PEM fuel cell stack, which takes a large portion of stack cost. In this study, as alternative materials for bipolar plate of PEM fuel cells, graphite composites were fabricated by compression molding. Graphite particles mixed with epoxy resin were used as the main substance to provide electric conductivity To achieve desired electrical properties, specimens made with different mixing ratio, processing pressure and temperature were tested. To increase mechanical strength, one or two layers of woven carbon fabric were added to the graphite and resin composite. Thus, the composite material was consisted of three phases: graphite particles, carbon fabric, and epoxy resin. By increasing mixing ratio of graphite, fabricated pressure and process temperature, the electric conductivity of the composite was improved. The results of tensile test showed that the tensile strength of the two-phase graphite composite was about 4MPa, and that of three-phase composite was increased to 57MPa. As surface properties, contact an91e and surface roughness were tested. Graphite composites showed contact angles higher than $90^{\circ}$, which mean low surface energy. The average surface roughness of the composite specimens was $0.96{\mu}m$.

Influence of Sizing Agent on Interfacial Adhesion and Mechanical Properties of Glass Fiber/Unsaturated Polyester Composites (사이징제에 따른 유리섬유/불포화 폴리에스터 복합재료의 계면 접착력과 기계적 물성)

  • 박수진;김택진;이재락;홍성권;김영근
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.326-332
    • /
    • 2000
  • The effects of sizing agent on the final mechanical properties of the glass fiber/unsaturated polyester composites were investigated by contact angle measurements at room temperature. In this work, glass fibers were coated by poly(vinyl alcohol), polyester, and epoxy type sizing agent and each property was compared. Contact angles of the sized glass fiber were measured by the wicking method based on Washburn equation using deionized water and diiodomethane as testing liquids. As an experimental result, the surface free energy calculated from contact angle showed the highest value in case of the glass fiber coated by epoxy sizing agent. From measurements of interlaminar shear strength (ILSS) and fracture toughness ( $K_{IC}$ ) of the composites, it was found that the sizing treatment on fibers could improve the fiber/matrix interfacial adhesion, resulting in growing the final mechanical properties. This was due to the enhanced surface free energy of glass fibers in a composite system.

  • PDF

Failure Behavior of Pin-jointed Cylindrical Composites Using Acoustic Emission Technique (AE기법을 이용한 원통형 복합재의 핀 체결부 파괴거동)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Chan-Gyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test with acoustic emission technique. The composites were fabricated by a filament winding process, and three types of laminated patterns were considered. Type 1 was fabricated with stitch, Type 2 was fabricated without stitich and Type 3 was fabricated with prepregs. According to the results, bearing strength of Type 1 was 3.3% lower than that of Type 2 and that of Type 3 was highest. Type 1 and Type 2 revealed a net-tension failure mode, respectively, whereas Type 3 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the Type 3 was higher than that of the Type 1 and Type 2. Therefore, the Type 3 was found to be structurally safer than the Type 1 and Type 2.

Study of Manufacturing Process and Properties of C/C Composites with Recycled Carbon Fiber Reinforced Plastics (리싸이클 CFRP 적용 C/C 복합재료 제조 및 특성 연구)

  • Kim, Seyoung;Han, In Sub;Bang, Hyung Joon;Kim, Soo-hyun;Seong, Young-Hoon;Lee, Seul Hee
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 2022
  • This study has a different direction from the existing technology of applying recycled carbon fiber obtained by recycling waste CFRP to CFRP again. A study was conducted to utilize recycled carbon fiber as a raw material for manufacturing a carbon/carbon (C/C) composite material comprising carbon as a matrix. First, it was attempted to recycle a commonly used epoxy resin composite material through a thermal decomposition process. By applying the newly proposed oxidation-inert atmosphere conversion technology to the pyrolysis process, the residual carbon rate of 1~2% was improved to 19%. Through this, the possibility of manufacturing C/C composite materials utilizing epoxy resin was confirmed. However, in the case of carbon obtained by the oxidation-inert atmosphere controlled pyrolysis process, the degree of oxygen bonding is high, so further improvement studies are needed. In addition, short-fiber C/C composite material specimens were prepared through the crushing and disintegrating processes after thermal decomposition of waste CFRP, and the optimum process conditions were derived through the evaluation of mechanical properties.

Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites (측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가)

  • Donghyeon Lee;Ga In Cho;Hyung Mi Lim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2024
  • Graphene oxide (GO), known for its high stiffness, thermal conductivity, and electrical conductivity, is being utilized as a reinforcement in nanocomposite materials. This study evaluates the mechanical properties of epoxy nanocomposites incorporating GO and edge modified GO (E-GO), which has hydroxyl groups substituted only on its edges. GO/E-GO was uniformly dispersed in epoxy resin using ultrasonic dispersion, and mechanical properties were assessed through tensile testing. The results showed that the addition of nanoparticles increased both tensile strength and toughness. The tensile strength of the epoxy without nanoparticles was 74.4 MPa, while the highest tensile strength of 90.7 MPa was observed with 0.3 wt% E-GO. Additionally, the modulus increased from 2.55 GPa to 3.53 GPa with the addition of nanoparticles. Field emission scanning electron microscopy of the fracture surface revealed that the growth of cracks was impeded by the nanoparticles, preventing complete fracture and causing the cracks to split in multiple directions. E-GO, with surface treatment only on the edges, exhibited higher mechanical properties than GO due to its superior dispersion and surface treatment effects. These results highlight the importance of nanoparticle surface treatment in developing high-performance nanocomposite materials.