• Title/Summary/Keyword: Epoxy composites

Search Result 1,050, Processing Time 0.033 seconds

Tribological Behaviors of Carbon-Epoxy Composite with surface grooves (표면 요철을 가지는 탄소 섬유/에폭시 복합재료의 마찰 및 마모 특성)

  • Kim Seong Su;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.180-184
    • /
    • 2004
  • The tribological behavior of carbon epoxy composites whose surfaces have many small grooves of $100\mu m$ width was experimentally investigated with respect to the sliding direction against groove orientation, surface pressure (P) and velocity (V). The wear mechanism of the composites was observed to calculate the wear volume with respect to the friction coefficient using scanning electron microscopic (SEM). Experimental results show that the abrasive wear is dominant wear mechanism for the grooved composite surface and the friction and wear are greatly reduced when the sliding direction is parallel to the axis of groove because abrasive particles are removed through the grooves effectively.

  • PDF

Interfacial Evaluation of Kenaf and Ramie Fibers/Epoxy Composites using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf와 Ramie 섬유강화 에폭시 복합재료의 계면 물성 평가)

  • Son Tran Quang;Park Joung-Man;Hwang Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.92-95
    • /
    • 2004
  • Interfacial shear strength (IFSS) of environmentally- friend natural fiber reinforced polymer composites playa very important role in controlling the overall mechanical properties. In this work the IFSS of Ramie and Kenaf fibers/epoxy systems were evaluated using the combination of micromechanical technique, microdroplet test to find out an optimal condition in accordance with final purpose by comparing to each other. Clamping effect on fiber elongation was determined as well. In addition, the mechanical properties of the natural fibers were investigated using single fiber tensile test and analyzed statistically by both uni- and bimodal Weibull distributions. Microfailure modes of different natural fiber structures were observed using optical microscope.

  • PDF

Cure Monitoring and Nondestructive Evaluation of Carbon Fiber/Epoxy Composites by the Measurements of Electrical Resistance and AE

  • Lee Sang-Il;Yoon Dong-Jin;Park Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.264-267
    • /
    • 2004
  • Cure monitoring and nondestructive characteristics of carbon fiber/epoxy composites were evaluated by the measurements of electrical resistance and acoustic emission (AE). Logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when the fiber fracture occurred, whereas that of the electrodeposited composite increased relatively broadly up to infinity. As curing temperature increased. logarithmic electrical resistivity of steel fiber increased. On the other hand, electrical resistance of carbon fiber decreased due to the intrinsic electrical properties based on the band theory. The apparent modulus of the electrodeposited composite was higher than that of the untreated composite due to the improved interfacial shear strength (IFSS).

  • PDF

A Study on the Damage Damage Dection of Woven Cabon/Epoxy Laminates for the Hybrid Composite Train Bodyshell (하이브리드 복합재 철도 차량의 결함검출에 관한 연구)

  • Lee, Jae-Heon;Kim, Jung-Seok;Yeom, Ki-Young;Lee, Dong-Seon;Cheong, Seong-Kyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.264-267
    • /
    • 2005
  • Impact damages are very important in the perspective of residual strength of composite structures such as aircrafts, ships, and trains because those damages are sometimes not visible on the surface of the point of impact and the impact resistance of laminated composites is usually not so high. Thus, the impact characteristics of laminated composites should he investigated for the safety of composite structures. This paper investigates the low-velocity impact and damage detection conducted on woven carbon/epoxy laminates. Experimental results show that the type of damage is dependent on the impact energy level and the delamination area becomes larger as the impact energy increases.

  • PDF

Expert Cure System for the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료 제조의 전문가시스템 연구)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1773-1782
    • /
    • 1994
  • In this paper, the expert cure system for carbon fiber epoxy composite materials, which controls the temperature and pressure of the autoclave according to the several rules, was developed to manufacture better composite products in shorter curing time. The rules were based on the on-line measured quantities such as the dielectric properties and temperature of the composites and the pressure of the autoclave. The curing time and the mechanical properties of the composite materials manufactured with the expert cure system were compared to those of the specimens manufactured with the conventional cure cycle.

Effect of Hydrostatic Pressure on the Elastic Work Factor of Graphite/Epoxy Composites (정수압이 탄소섬유/에폭시 복합재의 탄성일인자에 미치는 영향)

  • 이지훈;김만태;신명근;한운용;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1390-1393
    • /
    • 2003
  • Work factor approach is conveniently used in metal fracture mechanics to determine fracture toughness from a single fracture test. In this work, we investigated the applicability of the work factor approach in order to determine fracture toughness of thick graphite/epoxy composites in the hydrostatic pressure environment from a single fracture test. The effect of hydrostatic pressure on the elastic work factor was studied, The stacking sequence used was multi-directional, [0$^{\circ}$/${\pm}$45$^{\circ}$/90$^{\circ}$]. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 300 MPa. The results showed that the elastic work factor was not affected by the hydrostatic pressure, The elastic work factor decreased in a linear fashion with crack length.

  • PDF

The Properties of Thermally Stimulated Currents according to Electrical Stress in Epoxy Composites (전기적 스트레스에 따른 에폭시 복합체의 열자격전류 특성)

  • Oh, Hyun-Seok;Kim, Jin-Sa;Park, Geon-Ho;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.401-403
    • /
    • 1995
  • The degradation phenomena according to electrical stress in epoxy composites were studied. The formation of electrets were observed by appling high voltages, 22.9[kW/cm], during 5[hr] to five kinds of specimens for a given mixing rate, and then TSC(thermally stimulated current) values were measured at the temperature range of $-160\sim200[^{\circ}C]$.

  • PDF

Microstructural Morphology of Molded Thin Composites of Thermotropic Liquid Crystalline Polymer and Polyamide 6 (서모트로픽 액정폴리머와 폴리아미드6으로 성형된 얇은 복합재료의 미세구조형태)

  • Choe, Nak-Sam;Choe, Gi-Yeong;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1703-1711
    • /
    • 2000
  • Microstructural morphology of molded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) has been studied as a function of epoxy fraction. Injection-moulding of a thin composite plaque at a temperature below the melting point of the LCP fibrils by suing the extruded LCP/PA6 pellets produced multi-layered structures: 1) the surface skin layer with thickness of 65-120 ym exhibiting a transverse orientation, 2) the sub-skin layer with an orientation perpendicular to the surface skin, i.e. in the flow direction, 3) the core layer with arc-curved flow patterns. Similar microstructural orientations were observed in the respective layers for the composite plaques with different fractions of epoxy.

Variation according to Curing Time in Epoxy Composites Using TSC Method (TSC방법을 이용한 에폭시 복합체의 경화 시간에 따른 변화)

  • 장인범;김성렬;박건호;이성일;김영천;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.260-263
    • /
    • 1996
  • The thermally stimulated currents(TSC) are measured to know the behaviour of charging particles of epoxy composites at the temperature range of -160∼200[$^{\circ}C$] and to prove the variation according to curing time in this study. It is confirmed that the peak amplitude is inversely proportional to the curing time, and TSC are reduced is and T$\sub$m/ is moved to high temperature side according to the curing time because carboxyl radical is formed by thermal oxidation and motility becomes lack.

  • PDF

Prediction of Insulation Reliability and Breakdown Life in Epoxy Composites (에폭시 복합체의 절연신뢰도 및 파괴수명 예측)

  • 신철기;박건호;왕종배;김성역;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.260-264
    • /
    • 1996
  • In this study, the dieiectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability . As a result. first of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature, and the breakdown strength of specimens because it is believed that the adding filler farms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. In the case of filled specimens with treating silane, the breakdown strength become much higher since the suggests that silane coupling agent improves interfacial combination and relays electric field concentration. Finally, from the analysis 7f weibull distribution. it was confirmed that as the allowed breakdown probability was given by 0.11[%].

  • PDF