• Title/Summary/Keyword: Epoxy Resins

Search Result 262, Processing Time 0.025 seconds

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method (졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석)

  • Kim, Ji-Won;Im, Hyun-Gu;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.

A study on the Properties of Composite Systems Using Polymer-Modified Mortar and Epoxy Resins for Waterproofing and Anti-Corrosion of Concrete Structures (시멘트 혼입 폴리머와 에폭시수지를 복합한 수처리 콘크리트구조물용 방수방식재료의 성능평가에 관한 연구)

  • Bae Kee-Sun;Jang Sung-Joo;Oh Sang-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.3-10
    • /
    • 2005
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. For the waterproofing and anti-corrosion of concrete structures, there can be required various properties such as absorption capacity and water permeability, adhesion and tensile strength, hair crack-resistance, impact-resistance, repeated low and high temperature test and chemical resistance, soundness for drinking water, soundness for drinking water and etc. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49 mm will be perform.

Characteristic of Underfill with Various Epoxy Resin (에폭시 수지에 따른 언더필의 특성에 관한 연구)

  • Noh, Bo-In;Lee, Jong-Bum;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.39-45
    • /
    • 2006
  • This study was investigated the thermal properties of underfill with various epoxy resins using thermal analysis methods such as differential scanning calorimetry (DSC), thermo gravimetry analysis (TGA), dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA). And, the adhesion strength of the underfills/FR-4 substrate was evaluated. The glass transition temperature (Tg) of underfill which was composed the cycolaliphatic epoxy resin was lower than that of underfill which was not composed the cycolaliphatic epoxy resin. The thermal degradation of underfill was composed of two processes, which involved chemical reactions between the degrading polymer and oxygen from the air atmosphere. The coefficient of thermal expansion (CTE) of underfill which was composed the cycolaliphatic epoxy resin was higher than that of underfill which was not composed the cycolaliphatic epoxy resin. The excessive curing temperatures caused a weak boundary layer of epoxy resin, which resulted in a deterioration of mechanical properties in the epoxy resin and thus led to poor adhesion property between the underfill/FR-4 substrate.

  • PDF

Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties (조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석)

  • Junho Jang;Dong Jun Kang;Hyeon-Gyun Im
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.346-355
    • /
    • 2023
  • Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

A Study on The Optimization of Pre-treatment for the Brine Wastewater from the Epoxy-resin Process by the Coagulation and Sedimentation Reactions (에폭시수지 생산 공정에서 발생되는 brine 폐수의 전처리를 위한 응집 및 침전 반응의 최적화 연구)

  • Cho, Wook Sang;Lee, Eun Young;Kang, Seong Wook;Lee, Jang Su;Jin, Su Ik
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.57-67
    • /
    • 2005
  • Epoxy resins are produced by the dehydro condensated reaction with ECH (Epichlorohydrin) and BPA(Bisphenol-A) as raw reactants under sodium hydroxide(NaOH) as a catalyst, and from this reaction, salted water named of brine, which contains ECH derivatives in condition of emulsion as likely as glycidol and polymer resins, is produced as an undesired side product. This brine water is alkaline wastewater and causes process fouling problems by plugging and chemically depositing polymer particles on the surface of inner wall of reactors and pipes, and decreases the biodegradable efficiency in the wastewater process. In this study, the optimization of coagulation and sediment reactions, using inorganic and organic polymer coagulants, were performed to remove the causes occurring the process fouling phenomena. And also, based on this study, the methodologies applicable to the commercial processes including economical analysis were presented.

  • PDF

Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins (불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성)

  • 박수진;김범용;이재락;신재섭
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-${\alpha}$,${\alpha}$,${\alpha}$-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa's equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, $\^$13/C NMR, and $\^$19/F NMR spectroscopy. The cure activation energy of FER/DDM system was 55.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.

Performance Improvement of Hydrogenated Bisphenol-A Epoxy Resin/Inorganic Additives Composites for Stone Conservation by Controlling Their Composition (석조문화재 보존을 위한 HBA계 에폭시 수지/무기 첨가물 복합체의 혼합조건에 따른 성능 개선 연구)

  • Choi, Yong Seok;Lee, Jung Hyun;Jeong, Yong Soo;Kang, Yong Soo;Won, Jongok;Kim, Jeong-Jin;Kim, Sa Dug
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.265-276
    • /
    • 2012
  • Physicochemical properties of HBA epoxy resins were controlled by varying hardener mixture and reactive diluent to improve applicability for stone conservation. The epoxy risen comprises hydrogenated Bisphenol-A based epoxide (HBA), fast curing agent (FH), slow curing agent poly(propyleneglycol)bis(2- aminopropylether) (SH) and difunctional polyglycidyl epoxide (DPE). Talc was used as an inorganic additive. The changes in viscosity and temperature during curing reactions depending on the composition of the epoxy resins were investigated. Additionally, bending, tensile and adhesive strengths were measured to identify the effective mechanical strength in stone conservation. Finally various compositions of epoxy resin/inorganic additives were developed for stone conservation by controlling cure kinetics and mechanical properties.

A Study on the Quantification and Chracterization of Endocrine Disruptor Bisphenoi-A Leaching from Epoxy Resin (에폭시 수지 용출물질에서의 내분비계장애물질 Bisphenol-A의 정량과 용출특성 파악)

  • Bae, Bumhan;Choi, Myoung-soo;Lim, Nam-woong;Jeong, Jae-hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.469-477
    • /
    • 2000
  • Bisphenol-A (BPA), a known endocrine disruptor, is a main building block of epoxy resin which is widely used as a coating agent in residential water storage tanks. Therefore, BPA leaching from the epoxy resin may have adverse effects on human health. The possibility of BPA leaching from three epoxy resins were tested with a modified KS D 8502 method at 20, 50, 75 and $100^{\circ}C$ in deionized water and the specified test water, respectively. BPA leached to the test water was identified using GC-MS and quantified with GC-FID after a sequential extraction and concentration. The results showed that BPA leaching has occurred in all three samples tested. The quantify of BPA leaching from unit area of epoxy resin coating was in the range of $10.677{\sim}273.120{\mu}g/m^2$ for sample A, 29.737~1734.045 for sample B and 52.857~548.778 for sample C depending on the test temperature, respectively. In general, the amount of BPA leaching increased as the water temperature increases. This result implies a higher risk of BPA leaching to drinking water during a hot summer season. In addition, microbial growth, measured by colony forming units, in epoxy coated water tanks was higher than that in a stainless steel tank suggesting that compounds leaching from epoxy resin may support the growth of microorganisms in a residential water holding tank.

  • PDF

Influences of Liquid Rubber on the Surfacial and Mechanical Properties of Epoxy Composites (에폭시 복합체의 표면 및 기계적 특성에 미치는 액상고무의 효과)

  • Choi, Sei-Young;Chu, Jeoung-Min;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • Epoxy resins are thermoset polymers that exhibit good adhesion, creep resistance, heat resistance, and chemical resistance. These polymers, however, give poor resistance to crack propagation and low impact strength. In this study, epoxy/carboxyl-terminated butadiene acrylonitrile (CTBN) and epoxy/amine-terminated butadiene acrylonitrile (ATBN) composites were prepared with different ratio of CTBN and ATBN to improve low impact strength of epoxy resin. The impact strength of epoxy/elastomeric composites shows high values with increasting nonpolar surface free energy while the tensile strength and the glass transition are decreased. The highest surface free energy, impact strength observed when 15 phr CTBN and 15 phr ATBN added, respectively. It can be concluded that as liquid rubber to improve impact strength of epoxy resin, ATBN is more preferable to CTBN.