• 제목/요약/키워드: Epoxy/Nano-micro silica composites

검색결과 16건 처리시간 0.021초

친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성 (AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

AC Breakdown Property of Nano-$TiO_2$ and Micro-Silica filler Mixture of Epoxy Based Composites

  • Heo, J.;Jung, E.H.;Lim, K.J.;Kang, S.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.150-150
    • /
    • 2009
  • In this paper, various kinds of epoxy based nanocomposites were made and AC breakdown properties of nano-$TiO_2$ and micro-silica filler mixture of epoxy based composites were studied by sphere to sphere electrode. Moreover, nano- and micro-filler combinations were adopted as an approach toward practical application of nanocomposite insulating materials. AC breakdown test was performed at room temperature $(25^{\circ}C)$, $80^{\circ}C$ and $100^{\circ}C$. The result shows breakdown strength about non-filled, nano-scale $TiO_2$, micro-scale silica and nano-$TiO_2$, micro-silica filled epoxy composites.

  • PDF

지환식 에폭시/표면개질된 마이크로-나노실리카 콤포지트의 유전특성 (Dielectric Properties for Surface Modified Micro-Nano Silica Composites of Cycloaliphatic Epoxy)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1840-1847
    • /
    • 2016
  • The surface of nanosilica and microsilica was modified in order to develop a high voltage insulation material for outdoor application. The modified silicas were well dispersed in an aliphatic cyclic epoxy resin. Dielectric properties were studied for 8 kinds of specimens: 1 kind of neat epoxy, 3 kinds of epoxy/microsilica composites, and 4 kinds of epoxy/microsilica/nanosilica composites. Complex dielectric constants were measured in the range of 10-2~1.2 Hz at room temperature.

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

Effect of Silica Particle Size on the Mechanical Properties in an Epoxy/Silica Composite for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.248-251
    • /
    • 2012
  • In order to develop a high voltage insulation material, epoxy/micro-silica composites (EMC) and epoxy/micro-silica/nano-silica composites (EMNC) with three different particle sizes in ${\mu}m$ and one particle size in nm were prepared and their tensile and flexural tests were carried out and the data was estimated by Weibull statistical analysis. The tensile strength of the neat epoxy was 82.8 MPa and those of the EMCs were larger than that of the neat epoxy, and they were much more advanced by the addition of 10 nm sized nano-silica to the EMCs. Flexural strength showed the same tendency of the tensile strength. As the micro-particle size decreased, tensile and flexural strength increased.

전기장분산법을 이용한 나노와 마이크로 혼합된 콤포지트의 전기적 특성 (Electrical Properties for Micro-and-Nano- Mixture Composites using Electric Field Dispersion)

  • 김정호;조대령;박재준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.32-32
    • /
    • 2010
  • A epoxy/multilayered silicate nanocomposite was prepared by a new AC electric application method and micro silica particle was poured into the nanocomposite in order to prepare epoxy/micro-and-nano- mixed composites (EMNC). Electric insulation breakdown strength was measured in a sphere-sphere electrode system designed for the prevention of edge breakdown and the data were estimated by Weibull plot. As the exfoliated silicate nano-plates were homogeniously dispersed in the micro silica particles, the insulation property was higherd.

  • PDF

나노실리카 충진함량 변화에 따른 EMNC의 특성연구 (1) -열적특성 중심으로- (Properties of EMNC according to Addition Contents Variation for Nanosilica (1) -For Thermal Properties)

  • 최운식;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.798-804
    • /
    • 2012
  • This paper focuses on thermal properties of a newly prepared composite material by nano-silica and micro-silica mixture. Nano-silica and micro-silica mixture composites were made by dispersing surface treated nano-silica(average radius: 10 nm) and micro-size silica in epoxy resin. To investigate the effects of nano-silica and micro-size silica mixture(ENMC), the glass transition temperature (Tg), coefficients of thermal expansion(CTE) and elastic modulus of DMA properties by DSC, TMA and DMA devices were measured for the ENMC according to increase nano-silica addition contents and EMC. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of surface treated nano-silica to the EMC system.

에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성 (Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites)

  • 강근배;권순석;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.779-785
    • /
    • 2012
  • The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

전기장 분산기술을 이용한 에폭시 마이크로-나노 입자가 혼합된 콤포지트의 전기적 그리고 기계적특성 (Electrical and Mechanical Properties for Micro-and-Nano Mixture Composites using Electric Field Dispersion Technique)

  • Cho, Dae-Lyoung;Han, Jin-Hee;Kim, Jung-Joong;Kim, Jung-Hoon;Yoo, Byoung-Bok;Park, Jae-Jun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.98-98
    • /
    • 2010
  • A epoxy/multilayered silicate nanocomposite was prepared by a new AC electric application method and micro silica particle was poured into the nanocomposite in order to prepare epoxy/micro-and-nano- mixed composites (EMNC). Electric insulation breakdown strength was measured in a sphere-sphere electrode system designed for the prevention of edge breakdown and the data were estimated by Weibull plot. As the exfoliated silicate nano-plates were homogeniously dispersed in the micro silica particles, the insulation property was higher.

  • PDF

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.