DOI QR코드

DOI QR Code

Properties of EMNC according to Addition Contents Variation for Nanosilica (1) -For Thermal Properties

나노실리카 충진함량 변화에 따른 EMNC의 특성연구 (1) -열적특성 중심으로-

  • Choi, Woon-Shik (Department of Technology Education, Sehan University) ;
  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 최운식 (세한대학교 기술교육학과) ;
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.08.24
  • Accepted : 2012.09.24
  • Published : 2012.10.01

Abstract

This paper focuses on thermal properties of a newly prepared composite material by nano-silica and micro-silica mixture. Nano-silica and micro-silica mixture composites were made by dispersing surface treated nano-silica(average radius: 10 nm) and micro-size silica in epoxy resin. To investigate the effects of nano-silica and micro-size silica mixture(ENMC), the glass transition temperature (Tg), coefficients of thermal expansion(CTE) and elastic modulus of DMA properties by DSC, TMA and DMA devices were measured for the ENMC according to increase nano-silica addition contents and EMC. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of surface treated nano-silica to the EMC system.

Keywords

References

  1. M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 63 (2000).
  2. J. Mark, Polym. Eng. Sci., 36, 2905 (1996). https://doi.org/10.1002/pen.10692
  3. R. Kotsilkova, D. Nesheva, I. Nedkov, E. Krusteva, and S. S. Rheological, J. Appl. Polym. Sci., 92, 2220 (2004). https://doi.org/10.1002/app.20240
  4. G. Chen, C. Wu, W. Weng, D. Wu, and W. Yan, Polymer, 44, 1781 (2003). https://doi.org/10.1016/S0032-3861(03)00050-8
  5. E. Thostenson, Z. Ren, and T. Chou, Compos. Sci. Technol., 61, 1899 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
  6. B. Wetzel, F. Haupert, and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003). https://doi.org/10.1016/S0266-3538(03)00115-5
  7. Y. Dong, D. Chaudhary, C. Ploumis, and K. T. Lau, Compos. Pt., A42, 1483 (2011).
  8. T. W. Dakin, IEEE Trans. Dielectr. Electr. Insul., EI-9, 121 (1974). https://doi.org/10.1109/TEI.1974.299321
  9. J. Sato, O. Sakaguchi, N. Kubota, S. Makishima, S. Kinoshita, T. Shioiri, T. Yoshida, M. Miyagawa, M. Homma, and E. Kaneko, IEEE/PES Transmission and Distribution Conference and Exhibition: Asia Pacific, 3, 1791 (2002).
  10. T. Shimizu, S. Kinoshita, S. Makishima, J. Sato, and O. Sakaguchi, IEEE 7th Intern. Conf. Properties and Application of Dielectric Materials (ICPADM), S22, 1194 (2003).
  11. T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 319 (2006). https://doi.org/10.1109/TDEI.2006.1624276
  12. J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011). https://doi.org/10.1109/TDEI.2011.5931051
  13. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010). https://doi.org/10.1109/TDEI.2010.5595553
  14. B. Wetzel, F. Haupert, and M. Q. Zhang, Compos. Sci. Technol., 63, 2055 (2003). https://doi.org/10.1016/S0266-3538(03)00115-5
  15. J. A. Kim, D. G. Seong, T. J. Kang, and J. R. Youn, Carbon, 44, 1898 (2006). https://doi.org/10.1016/j.carbon.2006.02.026
  16. S. Deng, L. Ye, and K. Friedrich, J. Mater. Sci., 42, 2766 (2007). https://doi.org/10.1007/s10853-006-1420-x
  17. A. Yasmin, J. J. Luo, J. L. Abot, and I. M. Daniel, Compos. Sci. Technol., 66, 2415 (2006). https://doi.org/10.1016/j.compscitech.2006.03.011
  18. H. J. Song and Z. Z. Zhang, Tribol. Int., 41, 396 (2008). https://doi.org/10.1016/j.triboint.2007.09.004
  19. J. M. Choi, S. Y. Yu, S. H. Yang, and M. H. Cho, Polymer, 52, 5197 (2011). https://doi.org/10.1016/j.polymer.2011.09.019
  20. K. Chen and S. Yang, J. Appl. Polym. Sci., 86, 414 (2002). https://doi.org/10.1002/app.10986
  21. X. Liu and Q. Wu, Polymer, 42, 10013 (2001). https://doi.org/10.1016/S0032-3861(01)00561-4
  22. Y. Sun, Z. Zhang, and C. P. Wong, IEEE T. Comon Pack., T29, 190 (2006).
  23. R. K. Goyal, A. N. Tiwari, U. P. Mulik, and Y. S. Negi, J. Phys. D. Appl. Phys., 41, 7 (2008).
  24. V. M. F. Evora and A. Shukla, Mater. Sci. Eng., A361, 358 (2003).
  25. D. Fragiadakisa, P. Pissisa, and L. Bokobza, Polymer, 46, 6001 (2005). https://doi.org/10.1016/j.polymer.2005.05.080
  26. J. J. Park, Trans. Electr. Electron. Mater., 13, 153 (2012). https://doi.org/10.4313/TEEM.2012.13.3.153
  27. W. K. Goertzen and M. R. Kessler, J. Appl. Polym. Sci., 109, 647 (2008). https://doi.org/10.1002/app.28071
  28. E. Foo, M. Jaafar, A. Aziz, and L. C. Sim, Compos. Pt., A42, 1432 (2011).
  29. P. L. Teh, M. Mariatti, H. M. Akil, C. K. Yeoh, K. N. Seetharamu, A. N. R. Wagiman, and K. S. Beh, Mater. Lett., 61, 2156 (2007). https://doi.org/10.1016/j.matlet.2006.08.036