• Title/Summary/Keyword: Epithelial to mesenchymal transition

Search Result 185, Processing Time 0.029 seconds

Interaction between Trichomonas vaginalis and the Prostate Epithelium

  • Kim, Jung-Hyun;Han, Ik-Hwan;Kim, Sang-Su;Park, Soon-Jung;Min, Duk-Young;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-$1{\beta}$, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.

Snail Switches 5-FU-induced Apoptosis to Necrosis through Akt/PKB Activation and p53 Down-regulation (Snail의 Akt/PKB의 활성화와 p53의 downregulation를 통한 5-FU-induced apoptosis의 necrosis로의 전환)

  • Lee, Su-Yeon;Jeon, Hyun-Min;Ju, Min-Kyung;Kim, Cho-Hee;Jeong, Eui-Kyong;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1018-1023
    • /
    • 2012
  • Snail is a zinc finger transcription factor that induces epithelial-to-mesenchymal transition (EMT), which promotes tumor invasion and metastasis by repressing E-cadherin expression. In addition, Snail restricts the cellular apoptotic response to apoptotic stimuli or survival factor withdrawal; however, its molecular mechanism remains largely unknown. In this study, we have investigated the mechanism underlying Snail-mediated chemoresistance to 5-fluorouracil (5-FU), one of the most widely used anti-cancer drugs. When Snail was overexpressed by doxycycline (DOX) in MCF-7 #5 cells, it inhibited 5-FU-induced apoptotic cell death and switched the cell death mode to necrosis. Snail expression, either by DOX treatment in MCF-7 #5 cells or by the transfection of Snail expression vectors pCR3.1-Snail-Flg, phosphorylation-resistant pCR3.1-S104, and 107A Snail-Flg in MCF-7 cells specifically induced PTEN down-regulation/inactivation and Akt/PKB activation, without affecting ERK1/2 activity. In addition, Snail prominently suppressed 5-FU-induced increases in p53 levels. These findings demonstrate that Snail switches 5-FU-induced apoptosis to necrosis through the activation of Akt/PKB and the down-regulation of p53 levels.

Sex-biased differences in the correlation between epithelial-to-mesenchymal transition-associated genes in cancer cell lines

  • Sun Young Kim;Seungeun Lee;Eunhye Lee;Hyesol Lim;Ji Yoon Shin;Joohee Jung;Sang Geon Kim;Aree Moon
    • Oncology Letters
    • /
    • v.18 no.6
    • /
    • pp.6852-6868
    • /
    • 2019
  • There is a wide disparity in the incidence, malignancy and mortality of different types of cancer between each sex. The sex-specificity of cancer seems to be dependent on the type of cancer. Cancer incidence and mortality have been demonstrated as sex-specific in a number of different types of cancer, such as liver cancer, whereas sex-specificity is not noticeable in certain other types of cancer, including colon and lung cancer. The present study aimed to elucidate the molecular basis for sex-biased gene expression in cancer. The mRNA expression of the epithelial-to-mesenchymal transition-associated genes was investigated, including E-cadherin (also termed CDH1), vimentin (VIM), discoidin domain receptor 1 (DDR1) and zinc finger E-box binding homeobox 1 (ZEB1) in female- and male-derived cancer cell lines by reverse transcription (RT)-PCR and the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) database analysis. A negative correlation was observed between DDR1 and ZEB1 only in the female-derived cancer cell lines via RT-PCR analysis. A negative correlation between DDR1 index (defined by the logarithmic value of DDR1 divided by ZEB1, based on the mRNA data from the RT-PCR analysis) and an invasive phenotype was observed in cancer cell lines in a sex-specific manner. Analysis of the CCLE database demonstrated that DDR1 and ZEB1, which are already known to be sex-biased, were negatively correlated in female-derived liver cancer cell lines, but not in male-derived liver cancer cell lines. In contrast, cell lines of colon and lung cancer did not reveal any sex-dependent difference in the correlation between DDR1 and ZEB1. Kaplan-Meier survival curves using the transcriptomic datasets such as Gene Expression Omnibus, European Genome-phenome Archiva and The Cancer Genome Atlas databases suggested a sex-biased difference in the correlation between DDR1 expression pattern and overall survival in patients with liver cancer. The results of the present study indicate that sex factors may affect the regulation of gene expression, contributing to the sex-biased progression of the different types of cancer, particularly liver cancer. Overall, these findings suggest that analyses of the correlation between DDR1 and ZEB1 may prove useful when investigating sex-biased cancers.

Visualization of mechanical stresses in expanding cell cluster (세포군집의 확장에 관여하는 물리적 힘의 가시화)

  • Cho, Youngbin;Gweon, Bomi;Ko, Ung Hyun;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.

Anticarcinogenic Effect of S-allylcysteine (SAC) (S-allylcysteine의 항암효과)

  • Kong, Il-Keun;Kim, Hyun Hee;Min, Gyesik
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1331-1337
    • /
    • 2015
  • S-allylcysteine (SAC) is an aged garlic derived water soluble organosulfur compound and has been suggested to have anticarcinogenic activity against diverse types of cancer cells. This review summarizes the cellular signaling pathways and molecular mechanisms whereby SAC exerts its effects on cellular proliferation, apoptosis, cell cycle progression and metastasis based on the results from both in vitro and in vivo studies. SAC activates proapoptotic proteins including Bax and caspase-3, but suppresses antiapoptotic Bcl-2 family proteins to bring about cancer cell death through mitochondria-mediated intrinsic pathway. SAC also inhibits cellular proliferation by inducing cell cycle arrest in which SAC reduces expression and activation of NF-κB, cyclins, Cdks, PCNA and c-Jun, but elevates expression of cell cycle inhibitor proteins p16 and p21 through suppression of both PI3K/Akt/mTOR and MAPK/ERK signaling pathways. And, SAC inhibits invasion and metastasis of cancer cells by inducing suppression of both angiogenesis and epithelial-mesenchymal transition (EMT) through decreased cyclooxygenase (COX)-2 expression and increased E-cadherin expression which were then caused by suppression of inhibitory transcription factors Id-1 and SLUG from SAC-mediated inactivation of both MAPK/ERK and PI3K/Akt/mTOR/NF-κB signaling pathways. Furthermore, SAC prevents toxic compound-induced carcinogenesis by inducing antioxidant enzymes such as glutathione-s-transferase (GST). Thus, SAC can be considered as a potential chemotherapeutic agent for the prevention and treatment of cancer.

Mesenchymal Stem Cells Ameliorate Fibrosis by Enhancing Autophagy via Inhibiting Galectin-3/Akt/mTOR Pathway and by Alleviating the EMT via Inhibiting Galectin-3/Akt/GSK3β/Snail Pathway in NRK-52E Fibrosis

  • Yu Zhao;Chuan Guo;Lianlin Zeng;Jialing Li;Xia Liu;Yiwei Wang;Kun Zhao;Bo Chen
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.52-65
    • /
    • 2023
  • Background and Objectives: Epithelial-Mesenchymal transition (EMT) is one of the origins of myofibroblasts in renal interstitial fibrosis. Mesenchymal stem cells (MSCs) alleviating EMT has been proved, but the concrete mechanism is unclear. To explore the mechanism, serum-free MSCs conditioned medium (SF-MSCs-CM) was used to treat rat renal tubular epithelial cells (NRK-52E) fibrosis induced by transforming growth factor-β1 (TGF-β1) which ameliorated EMT. Methods and Results: Galectin-3 knockdown (Gal-3 KD) and overexpression (Gal-3 OE) lentiviral vectors were established and transfected into NRK-52E. NRK-52E fibrosis model was induced by TGF-β1 and treated with the SF-MSCs-CM for 24 h after modelling. Fibrosis and autophagy related indexes were detected by western blot and immunocytochemistry. In model group, the expressions of α-smooth muscle actin (α-SMA), fibronectin (FN), Galectin-3, Snail, Kim-1, and the ratios of P-Akt/Akt, P-GSK3β/GSK3β, P-PI3K/PI3K, P-mTOR/mTOR, TIMP1/MMP9, and LC3B-II/I were obviously increased, and E-Cadherin (E-cad) and P62 decreased significantly compared with control group. SF-MSCs-CM showed an opposite trend after treatment compared with model group. Whether in Gal-3 KD or Gal-3 OE NRK-52E cells, SF-MSCs-CM also showed similar trends. However, the effects of anti-fibrosis and enhanced autophagy in Gal-3 KD cells were more obvious than those in Gal-3 OE cells. Conclusions: SF-MSCs-CM probably alleviated the EMT via inhibiting Galectin-3/Akt/GSK3β/Snail pathway. Meanwhile, Gal-3 KD possibly enhanced autophagy via inhibiting Galectin-3/Akt/mTOR pathway, which synergistically ameliorated renal fibrosis. Targeting galectin-3 may be a potential target for the treatment of renal fibrosis.

Development of Urinary Bladder Pre-Neoplasia by Schistosoma haematobium Eggs and Chemical Carcinogen in Mice

  • Chala, Bayissa;Choi, Min-Ho;Moon, Kyung Chul;Kim, Hyung Suk;Kwak, Cheol;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Schistosoma haematobium is a biocarcinogen of human urinary bladder (UB). The present study investigated developing UB cancer mouse model by injecting S. haematobium eggs into the bladder wall and introduction of chemical carcinogens. Histopathological findings showed mild hyperplasia to epithelial vacuolar change, and high grade dysplasia. Squamous metaplasia was observed in the S. haematobium eggs+NDMA group at week 12 but not in other groups. Immunohistochemistry revealed significantly high expression of Ki-67 in urothelial epithelial cells of the S. haematobium eggs+BBN group at week 20. The qRT-PCR showed high expression of p53 gene in S. haematobium eggs group at week 4 and S. haematobium eggs+BBN group at week 20. E-cadherin and vimentin showed contrasting expression in S. haematobium eggs+BBN group. Such inverse expression of E-cadherin and vimentin may indicate epithelial mesenchymal transition in the UB tissue. In conclusion, S. haematobium eggs and nitrosamines may transform UB cells into squamous metaplasia and dysplasia in correlation with increased expression of Ki-67. Marked decrease in E-cadherin and increase in p53 and vimentin expressions may support the transformation. The present study introduces a promising modified animal model for UB cancer study using S. haematobium eggs.

Cyr61/CCN1 Overexpression Induces Epithelial-Mesenchymal Transition Leading to Laryngeal Tumor Invasion and Metastasis and Poor Prognosis

  • Liu, Ying;Zhou, Yan-Dong;Xiao, Yu-Li;Li, Ming-Hua;Wang, Yu;Kan, Xuan;Li, Qiu-Ying;Lu, Jian-Guang;Jin, De-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2659-2664
    • /
    • 2015
  • Background: To examine the expression of cysteine-rich 61 (Cyr61/CCN1) protein in laryngeal squamouscell carcinoma (LSCC) tissues, and its relationship with the tumor epithelial-mesenchymal transition (EMT), invasion, metastasis, and prognosis. Materials and Methods: Immunohistochemistry was used to detect the expressions of Cyr61, Vimentin (Vim), and E-cadherin (E-cad) in 88 cases of LSCC tissues and 30 cases of tumor-adjacent normal tissues. Vim and E-cad were used as mesenchymal and epithelial markers, respectively, to determine the relationship between Cyr61 expression and the EMT of LSCC cells. In addition, clinical and histopathological data were combined to analyze the relationship between the positive-expression rates of Cyr61, Vim and E-cad and LSCC invasion, metastasis and prognosis. Results: In LSCC tissues, Vim expression rate was significantly higher than that of the tumor-adjacent tissues, whereas E-cad expression rate was significantly lower than that of the tumor-adjacent tissues. The Vim expression rate was significantly higher in stages T3 and T4 than in stages T1 and T2 LSCC tissues, whereas E-cad expression rate was significantly lower in stages T3 and T4 than in stages T1 and T2 LSCC tissues. Compared to the group without lymph node metastasis, the Vim expression rate was significantly higher and the E-cad expression rate was significantly lower in the group with lymph node metastasis. The expression rate of Cyr61 was significantly higher in LSCC tissues than in the tumor-adjacent normal tissues. In addition, the Cyr61 expression rate was higher in stages T3 and T4 than in stages T1 and T2 LSCC, and higher in the group with lymph node metastasis than in the group without lymph node metastasis. The Vim expression rate was significantly higher in the Cyr61 positive group than in the Cyr61 negative group, whereas the E-cad expression rate was significantly higher in the Cyr61 negative group than in the Cyr61 positive group. Survival analysis indicated that survival rates of Cyr61 positive, Vim positive and E-cad negative groups were significantly lower than that of Cyr61 negative, Vim negative and E-cad positive groups, respectively. Conclusions: Cyr61 expression is closely associated with LSCC invasion and lymph node metastasis. Overexpression of Cyr61 may induce EMT and therefore leads to LSCC invasion and metastasis and poor prognosis. Cyr61 may become a new maker for clinical prediction of LSCC invasion and metastasis and a new target for LSCC treatment.

Quantitative Changes in Tumor-Associated M2 Macrophages Characterize Cholangiocarcinoma and their Association with Metastasis

  • Thanee, Malinee;Loilome, Watcharin;Techasen, Anchalee;Namwat, Nisana;Boonmars, Thidarut;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3043-3050
    • /
    • 2015
  • The tumor microenvironment (TME) includes numerous non-neoplastic cells such as leukocytes and fibroblasts that surround the neoplasm and influence its growth. Tumor-associated macrophages (TAMs) and cancerassociated fibroblasts (CAFs) are documented as key players in facilitating cancer appearance and progression. Alteration of the macrophage (CD68, CD163) and fibroblast (${\alpha}-SMA$, FSP-1) cells in Opisthorchis viverrini (Ov) -induced cholangiocarcinoma (CCA) was here assessed using liver tissues from an established hamster model and from 43 human cases using immunohistochemistry. We further investigated whether M2-activated TAMs influence CCA cell migration ability by wound healing assay and Western blot analysis. Macrophages and fibroblasts change their phenotypes to M2-TAMs (CD68+, CD163+) and CAFs (${\alpha}-SMA+$, FSP-1+), respectively in the early stages of carcinogenesis. Interestingly, a high density of the M2-TAMs CCA in patients is significantly associated with the presence of extrahepatic metastases (p=0.021). Similarly, CD163+ CCA cells are correlated with metastases (p=0.002), and they may be representative of an epithelial-to-mesenchymal transition (EMT) with increased metastatic activity. We further showed that M2-TAM conditioned medium can induce CCA cell migration as well as increase N-cadherin expression (mesenchymal marker). The present work revealed that significant TME changes occur at an early stage of Ov-induced carcinogenesis and that M2-TAMs are key factors contributing to CCA metastasis, possibly via EMT processes.

Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

  • Lee, Jae-Young;Kim, Dae-Kwan;Ko, Jeong-Jae;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (${\gamma}H2AX$), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.