• Title/Summary/Keyword: Epigenetic modifications

Search Result 72, Processing Time 0.021 seconds

5-Aza-2'-deoxycytidine Induces Hepatoma Cell Apoptosis via Enhancing Methionine Adenosyltransferase 1A Expression and Inducing S-Adenosylmethionine Production

  • Liu, Wei-Jun;Ren, Jian-Guo;Li, Ting;Yu, Guo-Zheng;Zhang, Jin;Li, Chang-Sheng;Liu, Zhi-Su;Liu, Quan-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6433-6438
    • /
    • 2013
  • In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We studied the effect of the demethylating reagent 5-aza-2'-deoxycitidine (5-Aza-CdR) on MAT1A gene expression, DNA methylation and S-adenosylmethionine (SAMe) production in the HCC cell line Huh7. We found that MAT1A mRNA and protein expression were activated in Huh7 cells with the treatment of 5-Aza-CdR; the status of promoter hypermethylation was reversed. At the same time, MAT2A mRNA and protein expression was significantly reduced in Huh7 cells treated with 5-Aza-CdR, while SAMe production was significantly induced. However, 5-Aza-CdR showed no effects on MAT2A methylation. Furthermore, 5-Aza-CdR inhibited the growth of Huh7 cells and induced apoptosis and through down-regulation of Bcl-2, up-regulation of Bax and caspase-3. Our observations suggest that 5-Aza-CdR exerts its anti-tumor effects in Huh7 cells through an epigenetic change involving increased expression of the methionine adenosyltransferase 1A gene and induction of S-adenosylmethionine production.

Epigenetic modification of retinoic acid-treated human embryonic stem cells

  • Cheong, Hyun-Sub;Lee, Han-Chul;Park, Byung-Lae;Kim, Hye-Min;Jang, Mi-Jin;Han, Yong-Mahn;Kim, Seun-Young;Kim, Yong-Sung;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.830-835
    • /
    • 2010
  • Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.

AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2

  • Kim, Iljin;Choi, Sanga;Yoo, Seongkyeong;Lee, Mingyu;Park, Jong-Wan
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB-REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB-REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.

Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines

  • Kotipalli, Aneesh;Banerjee, Ruma;Kasibhatla, Sunitha Manjari;Joshi, Rajendra
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.17.1-17.13
    • /
    • 2021
  • Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3'-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.

Radiation-Induced CXCL12 Upregulation via Histone Modification at the Promoter in the Tumor Microenvironment of Hepatocellular Carcinoma

  • Ahn, Hak Jun;Hwang, Soon Young;Nguyen, Ngoc Hoan;Lee, Ik Jae;Lee, Eun Jeong;Seong, Jinsil;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.530-545
    • /
    • 2019
  • Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive $CD133^+/CD24^-$ cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.

Siberian Sturgeon Oocyte Extract Induces Epigenetic Modifications of Porcine Somatic Cells and Improves Developmental Competence of SCNT Embryos

  • Kim, So-Young;Kim, Tae-Suk;Park, Sang-Hoon;Lee, Mi-Ran;Eun, Hye-Ju;Baek, Sang-Ki;Ko, Yeoung-Gyu;Kim, Sung-Woo;Seong, Hwan-Hoo;Campbell, Keith H.S.;Lee, Joon-Hee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.266-277
    • /
    • 2014
  • Somatic cell nuclear transfer (SCNT) has generally demonstrated that a differentiated cell can convert into a undifferentiated or pluripotent state. In the SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor nuclei to the recipient cytoplasm of matured oocytes. However, because the efficiency of SCNT still remains low, a combination of SCNT technique with the ex-ovo method may improve the normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from the germinal vesicle (GV) stage Siberian sturgeon oocytes prior to their use as nuclear donor for SCNT would improve in vitro development. A reversible permeability protocol with $4{\mu}g/mL$ of digitonin for 2 min at $4^{\circ}C$ in order to deliver Siberian sturgeon oocyte extract (SOE) to porcine fetal fibroblasts (PFFs) was carried out. As results, the intensity of H3K9ac staining in PFFs following treatment of SOE for 7 h at $18^{\circ}C$ was significantly increased but the intensity of H3K9me3 staining in PFFs was significantly decreased as compared with the control (p<0.05). Additionally, the level of histone acetylation in SCNT embryos at the zygote stage was significantly increased when reconstructed using SOE-treated cells (p<0.05), similar to that of IVF embryos at the zygote stage. The number of apoptotic cells was significantly decreased and pluripotency markers (Nanog, Oct4 and Sox2) were highly expressed in the blastocyst stage of SCNT embryos reconstructed using SOE-treated cells as nuclear donor (p<0.05). And there was observed a better development to the blastocyst stage in the SOE-treated group (p<0.05). Our results suggested that pre-treatment of cells with SOE could improve epigenetic reprogramming and the quality of porcine SCNT embryos.

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells (중간엽줄기세포의 노화에 따른 후생유전학적 변화)

  • Oh, Youn Seo;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.724-731
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Experimental development of the epigenomic library construction method to elucidate the epigenetic diversity and causal relationship between epigenome and transcriptome at a single-cell level

  • Park, Kyunghyuk;Jeon, Min Chul;Kim, Bokyung;Cha, Bukyoung;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2022
  • The method of single-cell RNA sequencing has been rapidly developed, and numerous experiments have been conducted over the past decade. Their results allow us to recognize various subpopulations and rare cell states in tissues, tumors, and immune systems that are previously unidentified, and guide us to understand fundamental biological processes that determine cell identity based on single-cell gene expression profiles. However, it is still challenging to understand the principle of comprehensive gene regulation that determines the cell fate only with transcriptome, a consequential output of the gene expression program. To elucidate the mechanisms related to the origin and maintenance of comprehensive single-cell transcriptome, we require a corresponding single-cell epigenome, which is a differentiated information of each cell with an identical genome. This review deals with the current development of single-cell epigenomic library construction methods, including multi-omics tools with crucial factors and additional requirements in the future focusing on DNA methylation, chromatin accessibility, and histone post-translational modifications. The study of cellular differentiation and the disease occurrence at a single-cell level has taken the first step with single-cell transcriptome and is now taking the next step with single-cell epigenome.

Dynamics of ARF regulation that control senescence and cancer

  • Ko, Aram;Han, Su Yeon;Song, Jaewhan
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.598-606
    • /
    • 2016
  • ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer.