• Title/Summary/Keyword: Epidermal differentiation

Search Result 102, Processing Time 0.02 seconds

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Kwon, Boguen;Park, Jung-ha;Gang, Min jeong;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.238-247
    • /
    • 2022
  • Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.

Vitamin C Stimulates Epidermal Ceramide Production by Regulating Its Metabolic Enzymes

  • Kim, Kun Pyo;Shin, Kyong-Oh;Park, Kyungho;Yun, Hye Jeong;Mann, Shivtaj;Lee, Yong Moon;Cho, Yunhi
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.525-530
    • /
    • 2015
  • Ceramide is the most abundant lipid in the epidermis and plays a critical role in maintaining epidermal barrier function. Overall ceramide content in keratinocyte increases in parallel with differentiation, which is initiated by supplementation of calcium and/or vitamin C. However, the role of metabolic enzymes responsible for ceramide generation in response to vitamin C is still unclear. Here, we investigated whether vitamin C alters epidermal ceramide content by regulating the expression and/or activity of its metabolic enzymes. When human keratinocytes were grown in 1.2 mM calcium with vitamin C ($50{\mu}g/ml$) for 11 days, bulk ceramide content significantly increased in conjunction with terminal differentiation of keratinocytes as compared to vehicle controls (1.2 mM calcium alone). Synthesis of the ceramide fractions was enhanced by increased de novo ceramide synthesis pathway via serine palmitoyltransferase and ceramide synthase activations. Moreover, sphingosine-1-phosphate (S1P) hydrolysis pathway by action of S1P phosphatase was also stimulated by vitamin C supplementation, contributing, in part, to enhanced ceramide production. However, activity of sphingomyelinase, a hydrolase enzyme that converts sphingomyelin to ceramide, remained unaltered. Taken together, we demonstrate that vitamin C stimulates ceramide production in keratinocytes by modulating ceramide metabolicrelated enzymes, and as a result, could improve overall epidermal barrier function.

Epidermal Growth Factor 와 Transforming Growth Factor-α가 인체 구강편평상피세포암 세포의 성장에 미치는 영향에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE STIMULATORY EFFECTS OF EPIDERMAL GROWTH FACTOR AND TRANSFORMING GROWTH FACTOR-α ON THE GROWTH OF SQUAMOUS CANCER CELL LINES)

  • 박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제20권4호
    • /
    • pp.334-340
    • /
    • 1998
  • Stimulatory effects of epidermal growth factor (EGF) and transforming growth $factor-{\alpha}$($TGF-{\alpha}$) on the growth of squamous cancer cell lines established from human oral cancer tissue with moderate differentiation were studied in vitro. After culturing in serum-free media for 24 hours, growth factors-EGF only, $TGF-{\alpha}$ only and EGF, $TGF-{\alpha}$ together-were added to the media and numbers of cells were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and compared with the control at 96, 144 hours. Each of EGF and $TGF-{\alpha}$ showed statistically significant stimulatory effects on the growth of cells respectively. Dose-dependent relationship of the stimulatory effects were not clearly demonstrated. The effects of EGF were higher than those of $TGF-{\alpha}$ and combinative administration showed higher effects than those of single uses. In conclusion, EGF may play an important and major role in differentiation and growth of human oral squamous cancer cells. $TGF-{\alpha}$, produced from cells activated by EGF, also can stimulate the cell growth and could be an alternative ligand for EGF receptor.

  • PDF

인공피부 제조시 기저막 재건의 효과 (Reconstruction of basement membrane in the artificial skin)

  • 이재연;박경찬;김석화;서활;손영숙
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.335-338
    • /
    • 1996
  • We attempted to reconstruct basement membrane (BM) in between the epidermal compartment and dermal compartment in the artificial skin preparation and examine its effect on the skin architecture as well as on the epidermal differentiation. Laminin, one of the component of BM, stimulate the migration of the basal cells but type IV collagen which is a major component of the mechanical network of BM did not stimulate epidermal migration. However laminin in the presence of type IV collagen at a 1:1 molar ratio did not stimulate epidermal migration but provide nice demarcation between epidermis and dermis. This mixture of laminin and type IV collagen enhanced epidermal differentiation in the artificial skin based on the morphological observation as well as biochemical criteria. The epidermal acquirement of migratory ability on the laminin-rich substrate suggest that this type of unbalance in the expression of the components of BM may prevail in the area of healing tissue and the invasive transition of the tumor. The result in this study provide the technical improvement in the artificial skin preparation and further application of this technique for the reconstruction of other bio-artificial organ.

  • PDF

포스파티딜세린의 각질세포 분화 유도를 통한 피부장벽 기능 강화 (Phosphatidylserine Enhances Skin Barrier Function Through Keratinocyte Differentiation)

  • 정소영;남상준;최왕근;서미영;김진욱;이승헌;박장서
    • 대한화장품학회지
    • /
    • 제32권1호
    • /
    • pp.17-22
    • /
    • 2006
  • 포스파티딜세린(Phosphatidylserine; PS)은 생체막에서 구조적인 역할을 담당하는 인지질로서, 생체 내 다양한 세포작용에 필수적인 신호전달 효소의 보조인자로서 작용하는 것으로 알려져 있다. 하지만, PS의 생리활성에 대한 연구는 거의 이루어지지 않았고, 특히 피부에서의 생리활성에 대한 연구는 전무한 실정이다. 본 연구에서는 무모생쥐의 피부에 tape-stripping으로 경표피수분손실(TEWL)의 증가를 유도한 후, PS를 도포함으로써 그 손실을 현저히 감소시켰다. 또한, PS 도포군의 피부에서 세라마이드 함량이 증가된 사실을 확인한 바 있다. PS 도포군에서 non-hydroxyl 세라마이드와 glucosyl 세라마이드의 함량이 비처리군과 비교하여 각각 1.4배와 1.6배로 증가하였다. PS는 또한 피부각질세포의 분화를 촉진하였다. 피부각질세포에 PS를 처리함으로써 세포 형태가 분화상을 띄고 있음을 현미경 상에서 확인하였고, 표피분화의 특이적 표지 단백질인 Involucrin (INV)과 Transglutaminase 1 (TG'ase 1)의 발현이 각각 3.5배와 3배로 현저히 증가하였음을 웨스턴 블랏을 통하여 확인하였다. 또한 무모생쥐 피부에 PS를 도포한 결과 INV와 loricrin 단백질 발현이 증가하였다. 본 연구는 PS가 피부에서 생리활성을 나타낸다는 최초의 증거를 제시하며, 구체적으로는 각질세포 분화를 촉진함으로써 피부 세라마이드 함량을 증가시키고 경표피 수분손실을 감소시켜 궁극적으로 피부장벽을 강화하는 작용을 한다는 것을 보여준다.

표피항상성과 건조피부의 관리 (Epidermal Homeostasis and Dry Skin Management)

  • 박장서
    • 대한화장품학회지
    • /
    • 제34권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 피부장벽을 포함한 표피층은 인체의 조직 가운데에서도 가장 역동적인 기관이다. 다시 말해서 끊임없이 새로운 표피세포의 형성, 분화 및 탈각과정이 반복되면서 표피항상성(epidermal homeostasis)을 유지한다. 표피항상성은 피부기능 가운데 가장 주요한 기능인 permeability barrier homeostasis의 확립으로 연결된다. Permeability barrier homeostasis는 각질층에서 이루어지며 이를 형성하고 유지하기 위해 매우 정교하게 조절되어야 한다. 표피항상성을 조절하는 핵심 조절인자로서 nuclear hormone receptor(NHR)가 중심에 있음이 최근 다양한 연구를 통해 입증되었다. 이들은 각질세포 특이적인 단백질, 즉, involucrin, loricrin 및 trans-glutaminase 1(TG 1) 등의 발현을 유전자 수준에서 조절할 뿐 아니라 표피 지질성분의 생합성을 증가시키는 등 피부장벽을 구성하는 brick 및 mortar의 생성과 유지에 핵심적 역할을 하는 것으로 알려졌다. NHR 가운데 peroxisome proliferator activator receptor(PPAR)와 liver X receptor(LXR)의 activator/ligands가 리놀레인산 등 지방산, leukotriene, prostanoid 및 oxygenated sterol 등이 지질대사과정에서 형성된 지질 종류인 까닭에 liposensor로도 알려지고 있다. 따라서 liposensor들을 비롯한 PPAR과 LXR activator/ligands들은 피부장벽기능이 저해된 아토피성 피부를 포함하여 건조피부를 관리하는 epidermotherapy의 수단으로서 잠재적 가능성이 있다고 생각된다.

Engineering of a Human Skin Equivalent

  • Ghalbzouri Abdoelwaheb El
    • 대한화장품학회지
    • /
    • 제29권2호
    • /
    • pp.105-130
    • /
    • 2003
  • Human skin equivalents, also designated as cultured skin substitute (Boyce and Warden, 2002) or organotypic co-cultures (Maas-Szabowski et al., 1999, 2000, 2003), are three-dimensional systems that are engineered by seeding fibroblasts into a three-dimensional dermal matrix. Such a dermal equivalent is then subsequently seeded with human keratinocytes. After cell attachment, the culture is kept first under submerged condition to allow keratinocyte proliferation. Thereafter, the culture is lifted the air-liquid interface (A/L) to expose the epidermal compartment to the air, and to further induce keratinocyte differentiation. During the air-exposure, nutrients from the medium will diffuse through the underlying dermal substrate towards the epidermal compartment and support keratinocyte proliferation and differentiation. Under these conditions, a HSE is formed that shows high similarity with the native tissue from which it was derived (Figure 1) (Bell et at., 1981; Boyce et al., 1988; Ponec et al., 1997;El Ghalbzouri et al.., 2002).

MOLECULAR CONTROLS OF EPIDERMAL GROWTH AND DIFFERENTIATION: TRANSFORMING GROWTH FACTORE

  • Son, Youngsook;Fuchs, Elaine
    • Toxicological Research
    • /
    • 제7권2호
    • /
    • pp.209-229
    • /
    • 1991
  • In the epidermis of skin, a fine balance exists between proliferating progenitor cells and terminally differentiating cells. We examined the effects of TGF-betas and retinoic acid (RA) on controlling this balance in normal human epidermal keratinocytes cultured under conditions where most morphological and biochemical features of epidermis in vivo are retained. Our results revealed marked and pleiotropic effects of both TGF-beta and RA on kerationcytes. In contrast to retinoids, TGF-betas acted on mitotically active basal cells to retard cell proliferation.

  • PDF

무모쥐에서 자외선에 의한 피부 장벽 손상에 미치는 커큐민의 보호 효과 (Beneficial Effect of Curcumin on Epidermal Permeability Barrier Function in Hairless Rat)

  • 전희영;김정기;김완기;이상준
    • 한국식품과학회지
    • /
    • 제40권6호
    • /
    • pp.686-690
    • /
    • 2008
  • In vivo에서 8주간의 UVB 처리에 의해 유발되는 피부 장벽 기능 손상에 대한 커큐민의 보호 효능을 관찰한 결과, UVB에 의해 유도되는 경표피 수분손실량의 증가와 비정상적인 각질 세포의 증식이 커큐민의 섭취에 의해 억제됨을 확인하여 커큐민이 피부 장벽 손상을 방어하고 피부 장벽 기능이 정상적으로 작용할 수 있도록 도움을 주는 것을 알 수 있었다. 커큐민의 피부 장벽기능 보호 작용 기전을 살펴보기 위하여 각질형성세포주를 이용하여 피부 장벽 조절인자에 대한 커큐민의 작용을 평가한 결과 커큐민은 filaggrin과 SPT의 발현을 농도 의존적으로 증가시킴을 확인하였으며, 이를 통하여 커큐민이 각질형성세포의 정상적인 분화를 촉진하고 세라마이드 합성에 영향을 미침으로써 피부 장벽 기능을 강화하는 효능이 있음을 추정할 수 있었다. 이상의 결과로부터 커큐민이 피부 장벽 보호 또는 개선 효능을 갖는 새로운 미용 식품 소재로써 이용 가능성이 높음을 알 수 있다. 다만 식품 소재로써 커큐민을 활용하기 위해서는 그간 보고된 커큐민의 낮은 bioavailability에 대한 연구를 참고하여 임상에서 유효한 용량을 설정하기 위한 연구가 더 이루어져야 할 것이다.