• Title/Summary/Keyword: Epicenter

Search Result 144, Processing Time 0.03 seconds

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Site responses of Japanese stations near the epicenter and Korean stations for the Fukuoka earthquake (후쿠오카 지진('05. 3. 20, $M_{JMA}=7.0$)에 대한 일본 인근 지진관측소와 국내 지진관측소의 주파수응답특성 비교)

  • Yun Kwan-Hee;Park Dong-Hee;Chang Chun-Jung;Choi Weon-Hack;Lee Dae-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.79-86
    • /
    • 2005
  • The apparent source spectrum of the Fukuoka earthquake is estimated at the seismic basement by removing from the observed spectra at Korean seismic stations the path and site responses that were previously revealed through inversion process applied to large spectral D/B accumulated until 2004. The approximate source spectrum is also estimated by using data recorded near the epicenter from various Japanese seismic networks and compared with the Korean source spectrum. The comparison result shows that there is good agreement among source spectra estimated based on the data from seismic networks of Korea at large distances (190km

  • PDF

Site Responses of Japanese Stations Near the Epicenter and Korean Stations for the Fukuoka Earthquake (후쿠오카 지진 ('05. 3. 20, $M_{JMA}=7.0$)에 대한 일본 인근 지진관측소와 국내 지진관측소의 주파수응답특성 비교)

  • Yun, Kwan-Hee;Park, Dong-Hee;Chang, Chun-Jung;Choi, Weon-Hack;Lee, Dae-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The apparent source spectrum of the Fukuoka earthquake is estimated at the seismic basement by removing from the observed spectra at Korean seismic stations the path and site responses that were previously revealed through inversion process applied to large spectral D/B accumulated until 2004. The approximate source spectrum is also estimated by using data recorded near the epicenter from various Japanese seismic networks and compared with the Korean source spectrum. The comparison result shows that there is good agreement among source spectra estimated based on the data from seismic networks of Korea at large distances (190 km

  • PDF

GPS Ionospheric Perturbations Following ML ≥ 5.0 Earthquakes in Korean Peninsula (한반도내 규모 5.0 이상의 지진에 의한 GPS 전리층 변동)

  • Sohn, Dong-Hyo;Park, Sun-Cheon;Lee, Won-Jin;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1531-1544
    • /
    • 2018
  • We detected the coseismic ionospheric disturbance generated by the earthquakes of magnitude 5.0 and greater in Korean Peninsula. We considered the seismic events such as Gyeongju earthquake in September 2016 with magnitude 5.8, the Pohang earthquake in November 2017 with magnitude 5.4, and the underground nuclear explosion from North Korea in September 2017 with magnitude 5.7. Although all GPS stations were not detected, the ionospheric disturbance induced by these earthquakes occurred approximately 10-30 minutes and 40-60 minutes after the events. We inferred that the time difference within each variation is due to the different focal depth and the geometry of epicenter, satellite, and GPS station. In the case of the Gyeongju earthquake, the earthquake had relatively deeper depth than the other earthquakes. However, the seismic magnitude was bigger and it occurred at nighttime when the ionospheric activity was stable. So we could observe such anomalous variations. It is considered that the ionospheric disturbance caused by the difference in velocity of the upward propagating waves generated by earthquake appears more than once. Our results indicate that the detection of ionospheric disturbances varies depending on the geometry of the GPS station, satellite, and epicenter or the detection method and that the apparent growth of amplitude in the time series varies depending on the focal depth or the site-satellite-epicenter geometry.

Further seismic displacement PSDF results

  • Morales, C.A.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.663-666
    • /
    • 2010
  • The spectral content of ground displacement of the 10 largest last California earthquakes is studied. Specifically, the power spectral density function of the critical horizontal-component record of the closest-to-epicenter station is analyzed in each case. The results permit to state that horizontal ground displacement is a narrow-band process. This fact was previously noticed while trying to solve the large-base-displacement problem in isolated structures and it was fundamental in the solution of this issue; however, these preliminary results were limited in number to enable a statement like the foregoing one. Thus, the broader results presented herein were necessary.

Detection and Analysis of Acoustic Emission Signal at the Epicenter on the Circular Glass Plate During Pencil Land Fracture (연필심 파괴시 유리원판의 진앙점에서 음향방출 신호의 검출 및 해석)

  • Lee, Jong-Gyu;Jang, Ji-Won;Park, Jeong-Man
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • Theoretical evaluations of the vertical displacement at the epicenter on the circular glass plate have been carried out in the case of the unit point loading(1 dyne force strength) with the Heaviside step-function time dependency. Acoustic emission signals generated during pencil lead($\Phi$=0.5mm, HB) fracture on the soda-lime glass($\Phi$=22cm, thickness=2.8cm) were observed by the optical Michelson interferometer with the stabilized circuit, and then the source function of the observed acoustic emission signals was analyzed by the deconvolution method. The source function of acoustic emission during pencil lead fracture had a 'dip' of~0.7$\mu$sec duration time at the front portion and a step function of~0.5$\mu$sec rise time with a force strength of~4.5N.

  • PDF

Intensity Analysis of the 26 June 1997 Kyongju Earthquake and Its Geological Significance (1997년 6월 26일 경주지진의 진도분석 및 지진 지질학적 의의)

  • 경재복;이희욱
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.13-23
    • /
    • 1998
  • An intensity of the 1997 Kyungju earthquake(M=4.3) was estimated at three hundred locations based on the field survey and questionaires from 2200 residents. The isoseismal shows almost circular pattern which doesnot reflect some specific geological trends. However,most of the Kyeongsang basin except the southwestern part is included within the area of MM intensity V. There occurred strong shaking, numerous cracks on the wall of the houses, and movement of slate on the roofs, falling of the tiles from the monument. The isoseismal of the highest MM intensity VII, 1-3 km in width and 9 km in length, is elongated along the Yangsan fault, which is located about 1.5 km west from epicenter. The lineaments near the epicenter exhibit almost N-S and NNE directions. The lineament distribution, the pattern of damage area and the solution of fault plane suggest that the Kyongju earthquake occurred with strike-slip sense along the Yangsan fault. The calculated intensity attenuation(I) with distance(R) is as follows : $I{\;}={\;}I_o{\;}+{\;}0.3461{\;}-{\;}0.3274{\;}{\times}{\;}1nR{\;}-{\;}0.086{\;}{\times}{\;}R$.

  • PDF

Analysis Study on the Earthquakes Occurred at June 12,17,26, 1681 in the Offshore Between the Yangyang and Samcheok Counties, Gangwon Province, Korea (1681년 6월 12일, 17일, 그리고 26일 양양-삼척 근해에서 발생한 지진기록의 분석)

  • Lee, DukKee;Li, YuChe;Yang, JunMo;Youn, YongHoon
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.89-97
    • /
    • 2004
  • Earthquake records written in the history documents such as “SeungJeongWon IlKi” and “Chosun Wangjo Shilok” for the earthquakes occurred around the offshore near Yangyang and Samcheok area in June, 1681, have been analyzed to estimate the intensity distribution and epicenters as well as magnitudes. Three consecutive earthquakes were analysed, which occurred near those area on June 12, 17, and 26, 1681. The Main-shock occurred on June 12, 1681 was felt in almost every provinces of Korea while after-shocks occurred on June 17 and 26, 1681, were felt in several provinces restrictively. Although the main-shock was felt in the entire provinces, the real damage had been concentrated in Kangwon province. A block of rock collapsed to fall due to main-shock in the mountain near Samcheok. No other man casualties were reported except a death due to being thrown off a horse by ground shaking in Seoul. Local micro-tsunami seems to be generated at the offshore of Samcheok due to the main-shock. The main-shock seems to be occurred in the offshore between Yangyang and Samcheok (38.0oN and 129.0oE) , the epicenter intensity and magnitude of which is over 8 in MMI and 6½ in Ms, respectively.

  • PDF

P-wave velocity structure in Southern Korea by using Velest program (Velest를 이용한 남한 지역의 P파 속도구조 분석)

  • 전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) has been operating Korean Earthquake Monitoring System(KEMS) to archive the real-time data stream and to determine event parameters (epicenter origin time and magnitude)by the automatic processing and analyst review. To do this KEMS uses the Vindel Hue's velocity model which was derived from Wonju KSRS data. Because KIGAM now receives the real-time data from many stations including Wonju KSRS Cholwon seismo-acoustic array Uljin Wolsung Youngkwang Taejon Seoul Kimcheon Taegu etc. the proper velocity model should be established around the Korean peninsula, In this study P were velocity structures was derived from VELEST program using 69 events among the 835 events determined by KEMS in 1999 which were recorded by at least 5 stations. General trend of velocity structure was similar to Sang Jo Kim's model but velocity value was low in crust and high in upper mantle. Due to the sensitivity of inversion results to the initial input model the artificial short and blast data might be added.

  • PDF

Preliminary study on the Earthquake Alert System (지진네트워크를 이용한 지진경보시스템 예비연구)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.213-217
    • /
    • 2000
  • It is essential to establish an earthquake alert system real-time seismographic data acquisition and data transmission by dedicated communications,. Up to now approximately 60 earthquake stations are installed in Korea and being operated by KMA. KEPRI,. KINS and KIGAM and its number will be increased in time. The earthquake data recorded in half of these stations are transmitted to data center and analysed in quasi real-time. Therefore if these real-time seismographic stations be connected to each organization by dedicated lines and we will develop an algorithm which we can calculate the magnitude and epicenter within 25-30 seconds after an earthquake occurred it will be possible to develop an Earthquake Alert System giving several tens of seconds warning in advance.

  • PDF