• 제목/요약/키워드: Enzyme regulation

검색결과 523건 처리시간 0.027초

베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구 (Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells)

  • 박규환;장정희
    • 대한본초학회지
    • /
    • 제28권6호
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.

프로테옴 분석에 의한 Bacillus subtilis PyrR 돌연변이체의 특성 (Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach)

  • 설경조;조현수;김사열
    • 한국미생물·생명공학회지
    • /
    • 제39권1호
    • /
    • pp.9-19
    • /
    • 2011
  • Bacillus subtilis의 pyrimidine biosynthetic (pyr) operon은 UMP의 de nove 생합성에 관여하는 enzyme들을 encode할 뿐만 아니라, 조절단백질인 PyrR도 encode한다. PyrR은 pyr mRNA-binding 조절 기능과 uracil phosphoribosyltransferase activity를 동시에 가지는 bifunctional 단백질이다. 본 연구에서는 Proteomic analysis를 이용하여 Uracil - 환경에서 DB104${\Delta}$pyrR의 단백질 패턴을 분석하여 단백질 레벨에서 PyrR 단백질의 실질적인 조절 양상을 관찰하였다. 두 균주의 세포질 단백질은 다양한 발현의 차이를 보였으며, Silver 염색된 2D-gel의 pI 4~10 사이에서는 1,300여개의 단백질이 검출되었으며, 단백질 발현 차이를 보이는 172개의 spot 중에서 42개의 단백질이 identification 되었다. 그 결과 pyr operon의 단백질(PyrAa, PyrAb, PyrB, PyrC, PyrD, and PyrF)이 모두 Up regulation이 이루어지고 있음을 확인할 수 있었으며, 이것은 단백질 레벨에서 Pyrimidine 생합성 과정이 PyrR에 의해서 정확히 Regulation 되어짐을 확인할 수 있었다. 또한 Pyrimidine 생합성의 Up regulation과 Down regulation 상태의 단백질의 패턴 양상도 분석할 수 있게 되었다. Pyrimidine의 생합성 과정은 DNA를 구성하는 기본적인 구성 요소를 생산하는 과정으로서 여러가지 Metabolism 가운데 중요한 위치를 차지하고 있다. 만약 Pyrimidine의 생합성 과정이 Over- expression된다면 다른 Metabolism의 균형에도 변화가 올 것이다. Proteomics Analysis에 이용한 DB104${\Delta}$pyrR 균주는 Pyrimidine 생합성의 조절에 관여하는 PyrR knock out 균주로서 Uracil - 환경에서는 전체적인 Pyrimidine 생합성 조절이 Up regulation이 되어지므로 Up regulation 동안 어떤 Metabolism에 영향을 주는지 관찰을 할 수 있게 되었다. 특히 Amino Acid Metabolism에 관계있는 단백질의 Up regulation이 이루어짐을 관찰할 수 있었으며 이것은 현재 각광을 받고 있는 단백질 산업에 응용함으로써 산업적으로 많은 기대를 할 수 있을 것으로 예상되어진다.

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권4호
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.

여성 호르몬의 변화가 치은 섬유아세포와 치주인대세포의 교원질 분해 효소의 활성에 미치는 영향 (In Vitro Effects of Female Sex Hormones on Collagenase Activity of Gingival Fibroblast and Periodontal Ligament Fibroblast)

  • 신지연;이철우;한수부
    • Journal of Periodontal and Implant Science
    • /
    • 제29권1호
    • /
    • pp.31-40
    • /
    • 1999
  • Many factors may affect periodontal changes during the physiologic conditions of woman(e.g. puberty, menstrual cycle, pregnancy, menopause). Recently many research has focused on the immunological changes of host, but the exact mechanism is not clear. Collagen is a major constituent of periodontium, and collagenase specifically digests the collagen and plays a role in destruction of periodontal tissue. So, I suppose that it participates with the cytokines in the inflammation of gingiva and vascular response during the changes of female sex hormones. Because there are some evidences of the existence of the receptors of estrogen and progesterone in the gingiva, it may be a target tissue of female sex hormones. In this experiment, gingival fibroblast and periodontal ligament cell were cultured in the presence of various concentrations of estrogen or progesterone corresponding to the menstrual cycle and pregnancy. Collagenase activity of the supernatant of culture media was determined by Spectrophotometric collagenase assay. The enzyme activity was calculated by the % decrease of the coated collagen. 1. The estrogen at both concentrations had no effect on the activity of collagenase of the gingival fibroblast. 2. The progesterone had some effect on the collagenase activity of the gingival fibroblast at low and high concentration of menstrual cycle, and elevated the enzyme activity at all range of pregnancy concentrations. 3. In periodontal ligament cells, estrogen elevated the enzyme activity at the early pregnancy concentration and progesterone elevated at the concentration just before menstruation. In this experiment, pregesterone elevated the collagenase activity of gingival fibroblast and periodontal ligament cells. But the mechanism of the up-regulation of the enzyme activity was not confirmed. The more experiments of direct effect of progesterone on gingival at the molecular level(e.g. northern blot analysis) can reveal the exact mechanism.

  • PDF

Preventive Effects of Lycopene-Enriched Tomato Wine against Oxidative Stress in High Fat Diet-Fed Rats

  • Kim, A-Young;Jeon, Seon-Min;Jeong, Yong-Jin;Park, Yong-Bok;Jung, Un-Ju;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제16권2호
    • /
    • pp.95-103
    • /
    • 2011
  • This study was performed to investigate the antioxidant mechanism of tomato wine with varying lycopene content in rats fed a high fat diet (HFD). Male Sprague-Dawley rats were randomly divided into five groups (n=10 per group) and fed an HFD (35% of total energy from fat) plus ethanol (7.2% of total energy from alcohol), tomato wine with varying lycopene content (0.425 mg%, 1.140 mg% or 2.045 mg% lycopene) or an isocaloric control diet for 6 weeks. Mice fed HFD plus ethanol significantly increased erythrocyte hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) levels with increases in activities of erythrocyte antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) compared to pair-fed rats. Supplementation of tomato wine with varying lycopene content decreased ethanol-mediated increases of erythrocyte lipid peroxidation and antioxidant enzyme activities in HFD-fed rats, and tomato wine with higher lycopene appeared to be more effective. Tomato wine also dose-dependently lowered TBARS levels with decreased pro-oxidant enzyme, xanthine oxidase (XOD) activity in plasma of HFD-fed rats. In contrast to erythrocytes, the inhibitory effects of tomato wine on hepatic lipid peroxidation were linked to increased hepatic antioxidant enzymes (SOD and CAT) and alcohol metabolizing enzyme (alcohol dehydrogenase and aldehyde dehydrogenase) activities. There were no significant differences in hepatic XOD and cytochrome P450-2E1 activities among the groups. Together, our data suggest that tomato wine fortified with lycopene has the potential to protect against ethanol-induced oxidative stress via regulation of antioxidant or pro-oxidant enzymes and alcohol metabolizing enzyme activities in plasma, erythrocyte and liver.

Expression Profiling of WSSV ORF 199 and Shrimp Ubiquitin Conjugating Enzyme in WSSV Infected Penaeus monodon

  • Jeena, K.;Prasad, K. Pani;Pathan, Mujahid Khan;Babu, P. Gireesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권8호
    • /
    • pp.1184-1189
    • /
    • 2012
  • White spot syndrome virus (WSSV) is one of the major viral pathogens affecting shrimp aquaculture. Four proteins, WSSV199, WSSV 222, WSSV 249 and WSSV 403, from WSSV are predicted to encode a RING-H2 domain, which in presence of ubiquitin conjugating enzyme (E2) in shrimp can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, a time course expression profile analysis of WSSV Open Reading Frame (ORF) 199 and Penaeus monodon ubiquitin conjugating enzyme (PmUbc) was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge by semi-quantitative RT-PCR as well as Real Time PCR. EF1${\alpha}$ was used as reference control to normalize the expression levels. A significant increase in PmUbc expression at 24 h post infection (h.p.i) was observed followed by a decline till 72 h.p.i. Expression of WSSV199 was observed at 24 h.p.i in WSSV infected P. monodon. Since the up-regulation of PmUbc was observed at 24 h.p.i where WSSV199 expression was detected, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. However, further studies need to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this chaos in the shrimp culture industry.

Biocomputational Characterization and Evolutionary Analysis of Bubaline Dicer1 Enzyme

  • Singh, Jasdeep;Mukhopadhyay, Chandra Sekhar;Arora, Jaspreet Singh;Kaur, Simarjeet
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.876-887
    • /
    • 2015
  • Dicer, an ribonuclease type III type endonuclease, is the key enzyme involved in biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs), and thus plays a critical role in RNA interference through post transcriptional regulation of gene expression. This enzyme has not been well studied in the Indian water buffalo, an important species known for disease resistance and high milk production. In this study, the primary coding sequence (5,778 bp) of bubaline dicer (GenBank: AB969677.1) was determined and the bubaline Dicer1 biocomputationally characterized to determine the phylogenetic signature among higher eukaryotes. The evolutionary tree revealed that all the transcript variants of Dicer1 belonging to a specific species were within the same node and the sequences belonging to primates, rodents and lagomorphs, avians and reptiles formed independent clusters. The bubaline dicer1 is closely related to that of cattle and other ruminants and significantly divergent from dicer of lower species such as tapeworm, sea urchin and fruit fly. Evolutionary divergence analysis conducted using MEGA6 software indicated that dicer has undergone purifying selection over the time. Seventeen divergent sequences, representing each of the families/taxa were selected to study the specific regions of positive vis-$\grave{a}$-vis negative selection using different models like single likelihood ancestor counting, fixed effects likelihood, and random effects likelihood of Datamonkey server. Comparative analysis of the domain structure revealed that Dicer1 is conserved across mammalian species while variation both in terms of length of Dicer enzyme and presence or absence of domain is evident in the lower organisms.

효소가수분해 조건에 따른 우유 케이신의 Angiotensin-I 전환효소 저해효과 (Angiotensin- I Converting Enzyme Inhibitory Properties of Bovine Casein Hydrolysates in Different Enzymatic hydrolysis Conditions)

  • 김현수;인영민;정석근;함준상;강국희;이수원
    • 한국축산식품학회지
    • /
    • 제22권1호
    • /
    • pp.87-93
    • /
    • 2002
  • 최근 고혈압을 예방하기 위한ACE 저해 펩타이드에 대한 연구는 주로 여러 가지 식품 단백질의 효소 가수분해물로부터 얻어진 펩타이드를 중심으로 이루어지고 있다. 본 연구에서는 케이신을 여러 가지 상업용 단백질분해 효소를 사용하여 ACE저해 효과가 높은 가수분해물 제조시 가수분해 조건이 ACE저해효과에 미치는 영향을 알아보자 하였으며 적정 가수분해 조건을 설정하고자 하였다. ACE 저해효과를 가지는 케이신 가수분해 물을 제조하기 위한 효소 종류, 첨가량 및 가수분해시간은 효소는 Aspergillus oryzae 유래의 promod 192를 사용하고, 효소의 첨가량은 케이신에 대하여 1%, 반응시간은 47$^{\circ}C$에서 12시간으로 하는 것이 적당하였다. 이 때 케이신 가수분해물의 $IC_{50}$/값은 248.71ug/m1(통상법), 265.84ug/ml(전처리법)로서 ACE 저해효과가 높았다.

DNA microarray를 이용한 항진균 활성세균 Bacillus lentimorbus WJ5의 유전자 발현 분석 (DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lentimorbus WJ5)

  • 이영근;김재성;장유신;조규성;장화형
    • 미생물학회지
    • /
    • 제39권3호
    • /
    • pp.141-147
    • /
    • 2003
  • 여러 항진균 활성 관련 유전자들의 발현 수준을 동시에 연구하기 위하여 DNA microarray를 이용하여 유전자들의 발현 패턴을 비교 분석하였다. 본 연구에서는 항진균활성을 가지는Bacillus lentimorbus WJ5의 genomic DNA를 무작위 하게 제한효소로 절단하여 2,000개의 DNA단편을 microarray하였으며, 감마선($^{60}Co$)조사로 유도된 7종의 항진균 활성 결핍 돌연변이체와 발현양상을 정량적으로 비교하였다. Gene Cluster (Michael Risen, Stanford Uniy.)를 이용한 DNA microarray의 분석 결과, 총 408개의 DNA 단편이 발현되는 것을 확인할 수 있었으며, 이들 중 20개의 DNA단편이 항진균 활성 결핍 돌연변이체에서 발현이 억제되는 것으로 나타났다. 특히,pbuX (xanthine permease, K222), ywbA (phosphotransferase system enzyme II, K393), ptsG (PTS glucose specific enzyme II ABC component, K877), yufO (ABC transporter(ATP-binding protein), K1301), 그리고 ftsY (signal recognition particle (docking protein), K868)는 모든 돌연변이체에서 동시에 발현되는 down-regulation된 유전자들로서 물질 이동과 관련된 것으로 보고되어 있으며, 항진균 활성 관련 신호 및 물질의 이동에 관여할 것으로 사료되어진다.

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.