DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lentimorbus WJ5

DNA microarray를 이용한 항진균 활성세균 Bacillus lentimorbus WJ5의 유전자 발현 분석

  • 이영근 (한국원자력연구소 방사선이용연구부) ;
  • 김재성 (한국원자력연구소 방사선이용연구부) ;
  • 장유신 (한국원자력연구소 방사선이용연구부) ;
  • 조규성 (한국원자력연구소 방사선이용연구부) ;
  • 장화형 (한국원자력연구소 방사선이용연구부)
  • Published : 2003.09.01

Abstract

The simultaneous expression levels of antifungal activity related genes was analyzed by DNA microarray. We constructed DNA chips contained 2,000 randomly digested genome spots of the antifungal bacterium of Bacillus lentimorbus WJ5 and compared its quantitative aspect with 7 antifungal activity deficient mutants induced by gamma radiation ($^{60}Co$). From the analysis of microarray hybridization by the Gene Cluster (Michael Eisen, Stanford Univ.), totally 408 genes were expressed and 20 genes among them were significantly suppressed in mutants. pbuX (xanthine permease, K222), ywbA (phosphotransferase system enzyme II, K393), ptsG (PTS glucose specific enzyme II ABC component, K877), yufO (ABC transporter (ATP-binding protein), K130l), and ftsY (signal recognition particle (docking protein), K868) were simultaneously down-regulated in all mutants. It suggested that they were supposed to be related to the antifungal activity of B. lentimorbus WJ5.

여러 항진균 활성 관련 유전자들의 발현 수준을 동시에 연구하기 위하여 DNA microarray를 이용하여 유전자들의 발현 패턴을 비교 분석하였다. 본 연구에서는 항진균활성을 가지는Bacillus lentimorbus WJ5의 genomic DNA를 무작위 하게 제한효소로 절단하여 2,000개의 DNA단편을 microarray하였으며, 감마선($^{60}Co$)조사로 유도된 7종의 항진균 활성 결핍 돌연변이체와 발현양상을 정량적으로 비교하였다. Gene Cluster (Michael Risen, Stanford Uniy.)를 이용한 DNA microarray의 분석 결과, 총 408개의 DNA 단편이 발현되는 것을 확인할 수 있었으며, 이들 중 20개의 DNA단편이 항진균 활성 결핍 돌연변이체에서 발현이 억제되는 것으로 나타났다. 특히,pbuX (xanthine permease, K222), ywbA (phosphotransferase system enzyme II, K393), ptsG (PTS glucose specific enzyme II ABC component, K877), yufO (ABC transporter(ATP-binding protein), K1301), 그리고 ftsY (signal recognition particle (docking protein), K868)는 모든 돌연변이체에서 동시에 발현되는 down-regulation된 유전자들로서 물질 이동과 관련된 것으로 보고되어 있으며, 항진균 활성 관련 신호 및 물질의 이동에 관여할 것으로 사료되어진다.

Keywords

References

  1. Soil Biol. Biochem. v.34 Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani Yu,G.Y.;J.B.Sinclair;G.L.Hartman;B.L.Bertagnolli https://doi.org/10.1016/S0038-0717(02)00027-5
  2. Phytochem. v.61 Mulberry anthracnose antagonists(iturins) produced by Bacillus amyloliquefaciens RC-2 Syuntaro,H.;Y.Shigenobu;S.Hajime;Y.Hiroshi;F.Yoshiharu https://doi.org/10.1016/S0031-9422(02)00365-5
  3. Phytopathol. v.81 Lack of a role for fluorescent siderophore prouction in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida Pauliz,T.C.;J.E.Lopper https://doi.org/10.1094/Phyto-81-930
  4. J. Biol. Chem. v.276 Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis Epplemann,K.;S.Doekel;M.A.Marahiel https://doi.org/10.1074/jbc.M104456200
  5. Adv. Radiat. Biol. v.17 The chemical consequences of radiation damage to DNA Becker,D.;M.Sevilla
  6. Radiation chemistry: present status and future prospects Radiation chemistry of organic liquids:saturated hydrocarbons Sauer, Jr.,M.C.;I.A.Shkrob;A.D.Trifunac;C.D.Jonah(ed.);B.S.M.Rao(ed.)
  7. Radiat. Phys. Chem. v.57 Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities Lee,Y.K.;H.H.Chang;J.S.Kim;K.S.Lee https://doi.org/10.1016/S0969-806X(99)00310-2
  8. Kor. J. Microbiol. v.37 Characteristics of antifungal bacterium, Bacillus subtilis YS1 and its mutant induced by gamma radiation Lee,Y.K.;J.S.Kim;I.G.Song;H.Y.Chung;H.H.Chang
  9. Kor. J. Microbiol. v.38 GroES expression related to antifungal activity of Streptomyces sp. SAR01 Lee,Y.K.;J.S.Kim;K.S.Cho;B.I.Jang;C.H.Choo
  10. J. Microbiol. v.41 Mutation spectrum of manganese(Ⅱ) peroxidase gene in Pleurotus ostreatus mutants induced by gamma radiation Chang,H.H.;Y.K.Lee;J.S.Kim;K.S.Lee;K.S.Cho
  11. Science v.258 Differential display of eukaryotic messenger RNA by means of polymerase chain reaction Liang,P.;A.B.Pardee
  12. Science v.270 Serial analysis of gene expression Velculesu,V.E.;L.Zhang;B.Vogelstein;K.W.Kinzler https://doi.org/10.1126/science.270.5235.484
  13. Proc. Natl. Acad. Sci. USA v.95 Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis Vasmatzis,G.;M.Essand;U.Brinkmann;B.Lee;L.Pastan https://doi.org/10.1073/pnas.95.1.300
  14. Science v.270 Quantitative monitoring of gene expression patterns with a complementary DNA microarray Schena,M.;D.Shalon;R.W.Davis;P.O.Brown https://doi.org/10.1126/science.270.5235.467
  15. Biopharm. Stat. v.13 Normalization methods for analysis of microarray gene-expression data Chen,Y.J.;R.Kodell;F.Sistare;K.L.Thompson;S.Morris;J.J.Chen https://doi.org/10.1081/BIP-120017726
  16. Bioinformatics v.18 SNOMAD(Stanardization and Normalization of MicroArray Data):web-accessible gene expression data analysis Colantuoni,C.;G.Henry;S.Zeger;J.Pevsner https://doi.org/10.1093/bioinformatics/18.11.1540
  17. Biotechniques v.32 Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systimatic artifacts Colantuoni,C.;G.Henry;S.Zeger;J.Pevsner
  18. BBA-Rev. Biomembr. v.1422 Phylogenetic characterization of novel transport protein families revealed by genome analyses Saier, Jr., M.H.;H.E.Brian;F.Sharouz;G.Joy;A.H.David;J.H.William;L.J.Donald;C.L.Eric;J.L.Howard;P.N.David;M.O.Asad;S.P.Stephanie;T.P.Ian;A.Q.John;S.Marek;T.T.Tseng;W.Shinichiro;B.Y.Gregory https://doi.org/10.1016/S0304-4157(98)00023-9
  19. BBA-Rev. Biomembr. v.1422 Structure/function studies on the bacterial carbohydrate transporters, enzymes Ⅱ,of the phosphoenolpyruvate-dependent phosphotransferase system Robillard,G.T.;J.Broos https://doi.org/10.1016/S0304-4157(99)00002-7
  20. J. Biosci. Bioeng. v.92 Bacterial phosphotransferase system (PTS) in carbohydrate and control of carbon metabolism uptake Pavel,K.;I.Masayuki;Y.Hldeaki https://doi.org/10.1263/jbb.92.502
  21. Microbiol. Mol. Biol. Rev. v.64 Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome Tjalsma,H.;A.Bolhuis;J.D.H.Jongbloed;S.Bron;J.M.van Diji https://doi.org/10.1128/MMBR.64.3.515-547.2000
  22. Proc. Natl. Acad. Sci. USA v.96 The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, anamino transferase, and a fatty acid synthase Duitman,E.H.;L.W.Hamoen;W.Rembold;G.Venema;H.Seitz;W.Saenger;F.Bernhard;R.Reinhardt;M.Schmidt;C.Ullrich;T.Stein;F.Leenders;J.Vater https://doi.org/10.1073/pnas.96.23.13294
  23. Mol. Microbiol. v.16 A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export Harvarstein,L.S.;D.B.Diep;I.F.Nes https://doi.org/10.1111/j.1365-2958.1995.tb02295.x
  24. FEMS Mirobiol. Lett. v.195 Effect of depletion of FtsY on spore morphology and the protein composition of the spore coat layer in Bacillus subtilis Hiroshi,K.;T.Hiromu;A.Reiko;N.Kouji;W.Kazuhito;Y.Kunio https://doi.org/10.1111/j.1574-6968.2001.tb10495.x